suppose that $A:=\{x:g(x)<a\}\neq \emptyset$ and $g(x)$ is a convex function. What is the closure of $A$? My conjecture is $\bar{A}=\{x:g(x)\leq a\}$ but I do not know how to prove it..
2026-02-22 23:30:00.1771803000
What is the closure of the level set of convex function $g(x):R^n\rightarrow R,$ $\{x:g(x)<a\}$.
219 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
2
There are 2 best solutions below
Related Questions in GENERAL-TOPOLOGY
- Is every non-locally compact metric space totally disconnected?
- Let X be a topological space and let A be a subset of X
- Continuity, preimage of an open set of $\mathbb R^2$
- Question on minimizing the infimum distance of a point from a non compact set
- Is hedgehog of countable spininess separable space?
- Nonclosed set in $ \mathbb{R}^2 $
- I cannot understand that $\mathfrak{O} := \{\{\}, \{1\}, \{1, 2\}, \{3\}, \{1, 3\}, \{1, 2, 3\}\}$ is a topology on the set $\{1, 2, 3\}$.
- If for every continuous function $\phi$, the function $\phi \circ f$ is continuous, then $f$ is continuous.
- Defining a homotopy on an annulus
- Triangle inequality for metric space where the metric is angles between vectors
Related Questions in ELEMENTARY-SET-THEORY
- how is my proof on equinumerous sets
- Composition of functions - properties
- Existence of a denumerble partition.
- Why is surjectivity defined using $\exists$ rather than $\exists !$
- Show that $\omega^2+1$ is a prime number.
- A Convention of Set Builder Notation
- I cannot understand that $\mathfrak{O} := \{\{\}, \{1\}, \{1, 2\}, \{3\}, \{1, 3\}, \{1, 2, 3\}\}$ is a topology on the set $\{1, 2, 3\}$.
- Problem with Cartesian product and dimension for beginners
- Proof that a pair is injective and surjective
- Value of infinite product
Related Questions in CONVEX-GEOMETRY
- Lemma 1.8.2 - Convex Bodies: The Brunn-Minkowski Theory
- Why does one of the following constraints define a convex set while another defines a non-convex set?
- Is the logarithm of Banach-Mazur distance between convex bodies an actual distance?
- Convex set in $\mathbb{R}^2_+$
- Unit-length 2D curve segment with maximal width along all directions
- A point in a convex hull
- Geometric proof of Caratheodory's theorem
- The permutations of (1,1,0,0), (-1,1,0,0), (-1,-1,0,0) are vertices of a polytope.
- Computing the subgradient of an indicator function or the normal cone of a set
- 3 Dimensional space
Related Questions in CLOSED-GRAPH
- Why can we assume that the range of the generator of a $C_0$ semigroup is already the full space?
- What is the closure of the level set of convex function $g(x):R^n\rightarrow R,$ $\{x:g(x)<a\}$.
- Regular Set of a closed Operator
- Closed graph theorem seems to state that a closed operator has to be bounded?
- A problem on Closed Graph Theorem
- Show that Identity is closed but not continuous
- A linear operator with a closed graph that is not bounded.
- About Closed Graph Theorem for conjugate linear map
- To show Maps are closed .Closed Graph theorem
- Uniform boundedness principle and closed graph Theorem
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
It is known that a convex function $g:\mathbb{R}^n\to \mathbb{R}$ is continuous. In particular, $\bar{A}\subset \{x:g(x)\leq a\}.$ On the other hand, if $x\in\mathbb{R}^n$ is such that $g(x)=a,$ then take $y\in\mathbb{R}^n$ such that $g(y)<a$ and let $x_t=tx+(1-t)y,$ $0<t<1.$ By convexity, $g(x_t)<a.$ By continuity, $g(x_t)\to g(x)$ as $t\to 1.$