Let $X_1,X_2 ,... X_n ;(n\geq1)$ be a random sample from $Exp(1)$. Then the distribution of $2n\bar X$ is ?
$(A) Exp\bigg(\dfrac{1}{2}\bigg)$
$(B) Exp(2n)$
$(C)\ \ \chi^2_{(n)}$
$(D)\ \ \chi^2_{(2n)}$
I solved this problem using Mgf :
Let $Y=\sum X_i$
$Y\sim G(1,n)$
$M_Y(t)=(1-t)^{-n}$
$M_{2Y}(t)=(1-2t)^\frac{-2n}{2} \sim \chi^2_{(2n)}$
Correct me in the above steps and please tell me any alternate method(s) which cab be used in this problem or any shortcut. This question came in 1 mark so i think there is some shortcut here. (Poor English sorry ).
Gamma distribution :If
$Y\sim G(a,\lambda)=$ $\dfrac{\alpha^{ \lambda}}{\Gamma{(\lambda)}}e^{-ax}x^{\lambda-1} \ \ ; \ \ (a>0) ,(\lambda>0), (x>0)$
(Please try to use this notation for gamma density i just started learning these things so it can be a case i might get confused) .
It is more common to use $\mathsf{Gamma}(\lambda,a)$ or $\Gamma(\lambda,a)$ in order to denote the gamma distribution (parameters switched in order).
It is well known (and handsome to know) that - if $X_1,\dots, X_n$ are independent with $X_i\sim\Gamma(\lambda_i,a)$:$$\sum_{i=1}^nX_i\sim\Gamma\left(\sum_{i=1}^n\lambda_i,a\right)$$
In your question we have $X_i\sim\Gamma(1,1)$ so $n\overline X=\sum_{i=1}^n X_i\sim\Gamma(n,1)$ and consequently $2n\overline X\sim\Gamma(n,\frac12)$.
The corresponding PDF is:$$\frac1{2^n\Gamma(n)}x^{n-1}e^{-\frac12x}$$ and is exactly the PDF of $\chi^2_{(2n)}$.