I need to show that, for every $n\in\mathbb{N}$, we obtain:
$$ 1+\frac{1}{2^2}+\frac{1}{3^2}+\cdots+\frac{1}{n^2}\leq2. $$
My proof is the following: We know that $\sum_{i=1}^{\infty}\frac{1}{i^2}=\frac{\pi^2}{6}$, so
$$ \sum_{i=1}^n\frac{1}{i^2}\leq\sum_{i=1}^{\infty}\frac{1}{i^2}=\frac{\pi^2}{6}<2. $$
But I want to know if exists another proof for this problem. I try induction, but I can't do it.
Thanks for advance.
$$\sum_{k=1}^n\frac{1}{k^2}\leq1+\sum_{k=2}^n\frac{1}{k(k-1)}=1+\sum_{k=2}^n\left(\frac{1}{k-1}-\frac{1}{k}\right)=2-\frac{1}{n}<2$$