Can anyone derive the update method (2nd equationn of (10) in [1]) in details without using the proximal method? Especially, how does taking the gradient of the dual function wrt "y" yield $\rho(Ax^{k+1}-b)$. [1]: https://i.stack.imgur.com/O610e.png
2026-02-22 19:50:55.1771789855
Deriving the gradient of the Augmented Lagrangian dual
257 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in OPTIMIZATION
- Optimization - If the sum of objective functions are similar, will sum of argmax's be similar
- optimization with strict inequality of variables
- Gradient of Cost Function To Find Matrix Factorization
- Calculation of distance of a point from a curve
- Find all local maxima and minima of $x^2+y^2$ subject to the constraint $x^2+2y=6$. Does $x^2+y^2$ have a global max/min on the same constraint?
- What does it mean to dualize a constraint in the context of Lagrangian relaxation?
- Modified conjugate gradient method to minimise quadratic functional restricted to positive solutions
- Building the model for a Linear Programming Problem
- Maximize the function
- Transform LMI problem into different SDP form
Related Questions in CONVEX-OPTIMIZATION
- Optimization - If the sum of objective functions are similar, will sum of argmax's be similar
- Least Absolute Deviation (LAD) Line Fitting / Regression
- Check if $\phi$ is convex
- Transform LMI problem into different SDP form
- Can a linear matrix inequality constraint transform to second-order cone constraint(s)?
- Optimality conditions - necessary vs sufficient
- Minimization of a convex quadratic form
- Prove that the objective function of K-means is non convex
- How to solve a linear program without any given data?
- Distance between a point $x \in \mathbb R^2$ and $x_1^2+x_2^2 \le 4$
Related Questions in ALTERNATIVE-PROOF
- Are $[0,1]$ and $(0,1)$ homotopy equivalent?
- An isomorphism $f:G_1 \to G_2$ maps the identity of $G_1$ to the identity of $G_2$
- Simpler Derivation of $\sin \frac{\pi}{4} = \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$,
- inequality with arc length integral
- In how many ways can the basketball be passed between four people so that the ball comes back to $A$ after seven passes? (Use recursion)
- An irreducible Markov chain cannot have an absorbing state
- Clarifying a proof that a certain set is an algebra
- Dilogarithmic fashion: the case $(p,q)=(3,4)$ of $\int_{0}^{1}\frac{\text{Li}_p(x)\,\text{Li}_q(x)}{x^2}\,dx$
- Proof by contrapositive: $x^4 + 2x^2 - 2x \lt 0 \Rightarrow 0 \lt x \lt 1$
- Alternative proof for the number of edges in a forest
Related Questions in LAGRANGE-MULTIPLIER
- How to maximize function $\sum_{i=1}^{\omega}\max(0, \log(x_i))$ under the constraint that $\sum_{i=1}^{\omega}x_i = S$
- Extrema of multivalued function with constraint
- simple optimization with inequality restrictions
- Using a Lagrange multiplier to handle an inequality constraint
- Deriving the gradient of the Augmented Lagrangian dual
- Lagrange multiplier for the Stokes equations
- How do we determine whether we are getting the minimum value or the maximum value of a function using lagrange...
- Find the points that are closest and farthest from $(0,0)$ on the curve $3x^2-2xy+2y^2=5$
- Generalized Lagrange Multiplier Theorem.
- Lagrangian multipliers with inequality constraints
Related Questions in DUALITY-THEOREMS
- Computing Pontryagin Duals
- How to obtain the dual problem?
- Optimization problem using Fenchel duality theorem
- Deriving the gradient of the Augmented Lagrangian dual
- how to prove that the dual of a matroid satisfies the exchange property?
- Write down the dual LP and show that $y$ is a feasible solution to the dual LP.
- $\mathrm{Hom}(\mathrm{Hom}(G,H),H) \simeq G$?
- Group structure on the dual group of a finite group
- On the Hex/Nash connection game theorem
- Finite-dimensional modules of the lie algebra $\frak{so}(n)$
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
For a fixed vector $u$, consider the function $r(y) := y^Tu = \sum_i y_i u_i$. Now, for a perturbation $\Delta y$ on $y$, one computes the difference $$\Delta r(y) := r(y + \Delta y) - r(y) = (y + \Delta y)^Tu - y^Tu = \Delta y^Tu = \Delta y^Tu + o(\|\Delta y\|^2). $$
Thus $r$ is smooth at any $y$, with constant gradient $\nabla r(y) = u$. Such a result can be easily read off any standard text on "matrix calculus", but i preferred to do it here from "first principles" so that you may see what's really going on...
Now invoke this fact on your problem with $u = Ax^{k+1} - b$. To conclude, note that a dual gradient ascent step reads: $$\text{new point} = \text{old point} + \text{step size} \times \text{gradient at old point}, $$ i.e $y^{k+1} = y^k + \rho (Ax^{k+1} -b )$.