Given the integral
$$ I(t) = \int_0^t \mathrm{d}x \exp(-[\alpha \cos x + \beta \sin x]),\quad \alpha,\beta\in \mathbb{R}, $$
how can one obtain the asymptotic behavior for $t \to \infty$?
Given the integral
$$ I(t) = \int_0^t \mathrm{d}x \exp(-[\alpha \cos x + \beta \sin x]),\quad \alpha,\beta\in \mathbb{R}, $$
how can one obtain the asymptotic behavior for $t \to \infty$?
Copyright © 2021 JogjaFile Inc.
Note that the integrand is $2\pi$-periodic. Hence, since
$$\int_0^{2\pi}e^{-\alpha\sin(x)+\beta\cos(x)}\,dx=2\pi \text{I}_0\left(\sqrt{\alpha^2+\beta^2}\right)$$
then we have for $t\in (2n\pi,2(n+1)\pi]$
$$\int_0^{t}e^{-\alpha\sin(x)+\beta\cos(x)}\,dx=2n\pi \text{I}_0\left(\sqrt{\alpha^2+\beta^2}\right)+\int_{2n\pi}^t e^{-\alpha\sin(x)+\beta\cos(x)}\,dx$$
Hence, we have asymptotically for large $t$
$$\int_0^t e^{-\alpha\sin(x)+\beta\cos(x)}\,dx\sim\text{I}_0\left(\sqrt{\alpha^2+\beta^2}\right) t$$