How do I find a derivative (with respect to $x$) of a Fresnel integral function with functional limits: $$f(x)=\int_{\sin^2(x^2)}^{e^{2x}}\sin(z^2)\,dz.$$
2026-02-22 20:39:20.1771792760
Derivative of Fresnel integral function with functional limits
1k Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in DERIVATIVES
- Derivative of $ \sqrt x + sinx $
- Second directional derivative of a scaler in polar coordinate
- A problem on mathematical analysis.
- Why the derivative of $T(\gamma(s))$ is $T$ if this composition is not a linear transformation?
- Does there exist any relationship between non-constant $N$-Exhaustible function and differentiability?
- Holding intermediate variables constant in partial derivative chain rule
- How would I simplify this fraction easily?
- Why is the derivative of a vector in polar form the cross product?
- Proving smoothness for a sequence of functions.
- Gradient and Hessian of quadratic form
Related Questions in FRESNEL-INTEGRALS
- Proving that $\int_{0}^{+\infty}e^{ix^n}\text{d}x=\Gamma\left(1+\frac{1}{n}\right)e^{i\pi/2n}$
- How does Raph Levien's Spiro choose angles for the ends of a path?
- Numerical solution of generalized Fresnel integral
- Show that $\int_0^n\sin x^2dx$ converges
- Derivative of Fresnel integral function with functional limits
- How to show that $\int_0^1 \sin \pi t ~ \left( \zeta (\frac12, \frac{t}{2})-\zeta (\frac12, \frac{t+1}{2}) \right) dt=1$?
- Problem proving the Fresnel integral
- Laplace transforms with Fresnel(?) integrals
- Asymptotic behavior of Fresnel-like integral of an exponential
- How to find power series for Fresnel integral?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
HINT
Recall that in general
$$f(x)=\int_{a(x)}^{b(x)}g(u) \,du\implies f'(x)=g(b(x))\cdot b'(x)-g(a(x))\cdot a'(x)$$