How to get (step-by-step) from this
$$ C(x)=\int_{0}^{x} \cos \left(\frac{\pi t^{2}}{2}\right) d t $$
to this?
$$ C(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(\frac{\pi}{2}\right)^{2 n}}{(2 n) !(4 n+1)} x^{4 n+1} $$
How to get (step-by-step) from this
$$ C(x)=\int_{0}^{x} \cos \left(\frac{\pi t^{2}}{2}\right) d t $$
to this?
$$ C(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(\frac{\pi}{2}\right)^{2 n}}{(2 n) !(4 n+1)} x^{4 n+1} $$
\begin{align*} C(x)&=\color{red}{\int_0^x\cos\left(\frac{\pi t^2}2\right)\mathrm dt}=\int_0^x\sum_{n=0}^\infty(-1)^n\frac{\left(\frac{\pi t^2}2\right)^{2n}}{(2n)!}\mathrm dt=\sum_{n=0}^\infty(-1)^n\frac{\left(\frac\pi2\right)^{2n}}{(2n)!}\int_0^xt^{4n}\mathrm dt\\ &=\sum_{n=0}^\infty(-1)^n\frac{\left(\frac\pi2\right)^{2n}}{(2n)!}\left[\frac{t^{4n+1}}{4n+1}\right]_0^x=\color{red}{\sum_{n=0}^\infty(-1)^n\frac{\left(\frac\pi2\right)^{2n}}{(2n)!}\frac{x^{4n+1}}{4n+1}} \end{align*}