Let $B_{k}$ the kth Bernoulli number, then using their asymptotic I can justify the absolute convergence of this series
$$\sum_{j=0}^{\infty}\frac{2^{2j-1}B_{2j}}{(2j)!},$$ since, if there are no mistakes $$\lim_{n\to\infty}\frac{c_{n+1}}{c_{n}}=\frac{1}{\pi^2}<1,$$ when $c_n=\frac{2^{2n-1}|B_{2n}|}{(2n)!}$.
Question. Can you get a closed-form for this series $$\sum_{j=0}^{\infty}\frac{2^{2j-1}B_{2j}}{(2j)!}?$$
I would like compute it more precisely than $0.656518$. I've used in Wolfram Alpha this
2^(2n-1) BernoulliB[2n]/(2n)!
but I don't know if I can compute it more precisely.
Thanks in advance.
According to equation $(30)$ in http://mathworld.wolfram.com/BernoulliNumber.html, $$ \frac t2 \coth \frac t2 = \sum_{n=0}^\infty \frac{B_{2n}t^{2n}}{(2n)!} $$ Choosing $t = 2$ gives $$ \sum_{j=0}^{\infty}\frac{2^{2j-1}B_{2j}}{(2j)!} = \frac 12 \coth(1) \approx 0.65651764275 \, . $$