Define the following,
$$F_2(x) := \frac{1}{2}+\frac{(2x)}{1!} B_2\Big(\tfrac{1}{2}\Big)+\frac{(2x)^2}{2!}B_3\Big(\tfrac{1}{2}\Big)+\frac{(2x)^3}{3!}B_4\Big(\tfrac{1}{2}\Big)+\dots $$
$$\color{brown}{F_3(x)} := \frac{1}{3}+\frac{(3x)}{1!} B_2\Big(\tfrac{1}{3}\Big)+\frac{(3x)^2}{2!}B_3\Big(\tfrac{1}{3}\Big)+\frac{(3x)^3}{3!}B_4\Big(\tfrac{1}{3}\Big)+\dots $$
$$F_4(x) := \frac{1}{4}+\frac{(4x)}{1!} B_2\Big(\tfrac{1}{4}\Big)+\frac{(4x)^2}{2!}B_3\Big(\tfrac{1}{4}\Big)+\frac{(4x)^3}{3!}B_4\Big(\tfrac{1}{4}\Big)+\dots $$
$$\color{brown}{F_6(x)} := \frac{1}{6}+\frac{(6x)}{1!} B_2\Big(\tfrac{1}{6}\Big)+\frac{(6x)^2}{2!}B_3\Big(\tfrac{1}{6}\Big)+\frac{(6x)^3}{3!}B_4\Big(\tfrac{1}{6}\Big)+\dots $$
From Summation of Series (2nd ed) by L.B Jolley, page 26, it seems that,
$$\color{brown}{F_3(x)} \overset{?}= \frac{1}{1+e^x+e^{2x}}\\ \color{brown}{F_6(x)} \overset{?}= \frac{1}{1+e^{x}+e^{2x}+e^{3x}+e^{4x}+e^{5x}}\tag1$$
I assume that $B_n(x)$ are the Bernoulli polynomials. However, when I try to numerically evaluate those two $F_k(x)$ using Mathematica, the LHS does not agree with the RHS.
Questions:
- How to interpret $B(n)$ such that $(1)$ holds true?
- And do $F_2(x)$ and $F_4(x)$ evaluate similar to $(1)$?
Ad Question 1: The polynomials $B_n(x)$ defined in L.B.W. Jolley's book Summation of Series are close relatives of the Bernoulli polynomials defined e.g. in L. Comtet's classic Advanced Combinatorics but not the same.
To differentiate the polynomials defined in L.B.W. Jolley's book from the more commonly defined Bernoulli polynomials we use, we denote them from now on with $\widetilde{B}_n$.
Ad question 2: The answer is affirmative. The nice formulas of $F_t(x)$ are valid for all $t\in \mathbb{N}$.
On the other hand note, that the general expression of $F_t(x)$ is \begin{align*} F_t(x)=\frac{1}{t}+\sum_{n\geq 1}\widetilde{B}_{n+1}\left(\frac{1}{t}\right)\frac{(tx)^n}{n!}\tag{2} \end{align*}
Comment:
In (3) we use the generating series for $n\widetilde{B}_n(x)$ according to (1)
In (4) note that $\widetilde{B}_1(x)=x$
This holds, since according to (2) we get \begin{align*} F_t(x)&=\frac{1}{\sum_{k=0}^{t-1}e^{kx}} =\frac{1}{t}+\sum_{n\geq 1}\frac{B_{n+1}\left(\frac{1}{t}\right)-B_{n+1}(0)}{n+1}\frac{(tx)^n}{n!}\\ &=1+\sum_{n\geq 0}\frac{B_{n+1}\left(\frac{1}{t}\right)-B_{n+1}(0)}{n+1}\frac{(tx)^n}{n!}\\ \end{align*} and \begin{align*} \frac{1}{F_t(x)}&=\sum_{k=0}^{t-1}e^{kx} =\sum_{k=0}^{t-1}\sum_{n\geq 0}\frac{(kx)^n}{n!} =\sum_{n\geq 0}\left(\sum_{k=0}^{t-1}k^n\right)\frac{x^n}{n!}\\ &=\sum_{n\geq 0}\frac{B_{n+1}(t)-B_{n+1}(0)}{n+1}\frac{x^n}{n!} \end{align*}