From the definition of the Laplace transform: $$\mathcal{L}[f(t)]\equiv \int_{t=0}^{\infty}f(t)e^{-st}\mathrm{d}t$$ where $s \in \mathbb{R^+}$.
$$\mathcal{L}\left[\int_{u=0}^{t}f(u)\mathrm{d}u\right]=\int_{t=0}^{\infty}e^{-st}\mathrm{d}t\int_{u=0}^{t}f(u)\mathrm{d}u$$
$$=\int_{t=0}^{\infty}e^{-st}\mathrm{d}t\int_{u=0}^{t} f(u)\mathrm{d}u=\int_{u=0}^{t} f(u) \mathrm{d}u\int_{t=0}^{\infty}e^{-st}\mathrm{d}t$$
$$\left[-\cfrac{1}{s}e^{-st} \int_{u=0}^{t} f(u)\mathrm{d}u \right]_{\color{red}{0}}^{\color{red}{\infty}}+\int_{\color{red}{0}}^{\color{red}{\infty}}\cfrac{1}{s}e^{-st}f(\color{blue}{t})\mathrm{d}\color{blue}{t}$$
$$=\cfrac{1}{s}\mathcal{L}\left[\color{#180}{f}\right]$$
Assuming that on page 486 in this book it was done by parts I have $\mathbf{3}$ questions about the calculation above:
$\mathbf{\color{red}{1)}}$ For the $2$ sets of limits marked red above for which variable ($u$ or $t$) do they belong?
$\mathbf{\color{blue}{2)}}$ For the variables marked blue, shouldn't the $t$'s be $u$'s?
$\mathbf{\color{#180}{3)}}$ For the part marked green should this be $f(t)$ instead of $t$?
Please explain your answers.
Thank you.
$$\mathcal{L}\left[\int_{u=0}^{t}f(u)\mathrm{d}t\right]$$ should be $$\mathcal{L}\left[\int_{u=0}^{t}f(u)\mathrm{d}u\right]$$ denote the argument to $\mathcal{L}$ a $g(t)= \int_{u=0}^{t}f(u)\mathrm{d}u$ to get $$\mathcal{L}[g(t)]=\int_{t=0}^{\infty}g(t)e^{-st}\mathrm{d}t = \int_{t=0}^{\infty} \left(\int_{u=0}^{t}f(u)\mathrm{d}u\right) e^{-st}\mathrm{d}t = \int_{t=0}^{\infty} \int_{u=0}^{t}f(u) e^{-st}\,\mathrm{d}u\,\mathrm{d}t \ne \int_{t=0}^{\infty}e^{-st}\mathrm{d}t\int_{u=0}^{t}f(u)\mathrm{d}u = \left(\int_{t=0}^{\infty}e^{-st}\mathrm{d}t\right)\cdot g(t)$$ Note also that you can't swap the integrals since $\mathrm{\color{purple}{the\space limit\space of\space inner\space one\space is\space an\space integration\space variable\space of\space the\space outer\space one.}}$
This is pretty much put your first two question less relevant, but to give a general answer:
always look at the differential $\mathrm{d}X$ so if $\frac{\partial F}{\partial x}=f$ you will have $$\int_a^b f(X,y,z,...) \mathrm{d}X = F(X,y,z,...)\big|_{X=a}^{X=b}$$
$f(t)={d\over dt}\int_0^t f(u)\,du$ by fundamental theorem of calculus