How to prove that for infinite sets $S,S'$- (i) If $|S'|<|S|$, then $|S^{S'}|=|S|$? (ii) If $|S'|=|S|$, then $|S^{S'}|=|2^S|$? Also what is $|S^{S'}|$ when $|S'|>|S|$?
2026-02-22 20:42:59.1771792979
Cardinality of powers of infinite sets
135 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in SET-THEORY
- Theorems in MK would imply theorems in ZFC
- Proving the schema of separation from replacement
- Understanding the Axiom of Replacement
- Ordinals and cardinals in ETCS set axiomatic
- Minimal model over forcing iteration
- How can I prove that the collection of all (class-)function from a proper class A to a class B is empty?
- max of limit cardinals smaller than a successor cardinal bigger than $\aleph_\omega$
- Canonical choice of many elements not contained in a set
- Non-standard axioms + ZF and rest of math
- If $\kappa$ is a regular cardinal then $\kappa^{<\kappa} = \max\{\kappa, 2^{<\kappa}\}$
Related Questions in CARDINALS
- Ordinals and cardinals in ETCS set axiomatic
- max of limit cardinals smaller than a successor cardinal bigger than $\aleph_\omega$
- If $\kappa$ is a regular cardinal then $\kappa^{<\kappa} = \max\{\kappa, 2^{<\kappa}\}$
- Intuition regarding: $\kappa^{+}=|\{\kappa\leq\alpha\lt \kappa^{+}\}|$
- On finding enough rationals (countable) to fill the uncountable number of intervals between the irrationals.
- Is the set of cardinalities totally ordered?
- Show that $n+\aleph_0=\aleph_0$
- $COF(\lambda)$ is stationary in $k$, where $\lambda < k$ is regular.
- What is the cardinality of a set of all points on a line?
- Better way to define this bijection [0,1) to (0,1)
Related Questions in INFINITY
- Does Planck length contradict math?
- No two sided limit exists
- Are these numbers different from each other?
- What is wrong in my analysis?
- Where does $x$ belong to?
- Divide by zero on Android
- Why is the set of all infinite binary sequences uncountable but the set of all natural numbers are countable?
- Is a set infinite if there exists a bijection between the topological space X and the set?
- Infinitesimal Values
- Cardinality of powers of infinite sets
Related Questions in ORDINALS
- Ordinals and cardinals in ETCS set axiomatic
- For each cardinal number $u$, there exists a smallest ordinal number $\alpha$ such that card$\alpha$ =$u$ .
- Intuition regarding: $\kappa^{+}=|\{\kappa\leq\alpha\lt \kappa^{+}\}|$
- Set membership as a relation on a particular set
- Goodstein's sequences and theorem.
- A proof of the simple pressing down lemma, is sup $x=x?$
- $COF(\lambda)$ is stationary in $k$, where $\lambda < k$ is regular.
- Difficulty in understanding cantor normal form
- What are $L_1$ and $L_2$ in the Gödel Constructible Hierarchy
- How many subsets are produced? (a transfinite induction argument)
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Note that in general, cardinal exponentiation is pretty much unspecified in ZFC. However, in the presence of the generalised continuum hypothesis, cardinal exponentiation is extremely precisely specified, and I'll give its behaviour here to demonstrate "the neatest thing you could possibly hope for". These are proved by much the same circular-inequality method as Point 2 above.