So, I've been wondering why PV integrals don't prove convergence of Integrals? For example, this integral $$ \int_{-1}^1 \frac{1}{x} \mathrm dx$$ converges to 0 using Cauchy Principle, and diverges by its definition.
What's the explanation for this?
Thanks in advance!
P.S - new to this site, I'm not sure if I used the math format correctly.
Edit: I've made it! Lol
Yes, using PV this integral is equal to $0$.
We have singularity at $x=0$ so we will separate the Integral there: $$\int_{-1}^1 1/x\,dx\overbrace{=}^{\text{PV}}\lim_{a\to0^+}\int_{-1}^{-a}1/x\,dx+\int_a^11/x\,dx$$ Set $-u=x,\,-du=dx$ to get $$\lim_{a\to0^+}\int_{-1}^{-a}1/x\,dx+\int_a^11/x\,dx=\lim_{a\to0^+}\int_1^a -1/u\,-du+\int_a^1 1/x\,dx=\lim_{a\to0^+} -\int_a^1 1/u\,du+\int_a^1 1/x\,dx=0$$
Normal integral with singularity will be defined like the following:$$\int_{-1}^1 1/x\,dx=\lim_{a\to0^+,\,b\to0^-}\int_{-1}^{b}1/x\,dx+\int_a^11/x\,dx$$Now, if I do everything like in PV I will get $$\lim_{a\to0^+,\,b\to0^-} -\int_{-b}^1 1/u\,du+\int_a^1 1/x\,dx$$. This will result:$$\lim_{a\to0^+,\,b\to0^-}-(\ln(1)-\ln(-b))+(\ln(1)-\ln(a))=\lim_{a\to0^+,\,b\to0^-}\ln(-b)-\ln(a)=\lim_{a\to0^+,\,b\to0^-}\ln\left(-\frac ba\right)$$ Without knowing the relationship between $a,b$ we cannot avaluate this, for example, of $b=-2a$ we will get $\ln(2)$, with $b=-6a$ we will get $\ln(6)$, what PV tells us is to set $b=-a$.