The cauchy principal value of $ \displaystyle\int_{-\infty}^{\infty}\dfrac{\sin\left(x\right)}{x^n}\,\mathrm{d}x $ is defined as :
$$ \begin{cases} {\displaystyle A=0\,,\quad n\in \mathbb{N^*}} \\[2mm] {\displaystyle A=\frac{\pi\left(-1\right)^{m}}{\left(n - 1\right)!}\,,\qquad n \in 2\mathbb{N}+1\,,\quad n = 2m + 1} \end{cases} $$.
My question here is : How we can prove that: $$ \int_{-\infty}^{\infty}\dfrac{\sin\left(x\right)}{x^{n}}\,\mathrm{d}x =A $$ .
Well, we are looking at:
$$\mathcal{I}_{\space\text{n}}:=\int_{-\infty}^\infty\frac{\sin\left(x\right)}{x^\text{n}}\space\text{d}x\tag1$$
When $\text{n}$ is in the form of:
$$\text{n}=2\cdot\text{k}+1\tag2$$
Where $\text{k}\in\mathbb{N}$ (including $0$).
We know that $\frac{\sin\left(x\right)}{x^{2\cdot\text{k}+1}}$ is an even function, so we can write:
$$\mathcal{I}_{\space2\cdot\text{k}+1}=2\cdot\int_0^\infty\frac{\sin\left(x\right)}{x^{2\cdot\text{k}+1}}\space\text{d}x\tag3$$
Using the 'evaluating integrals over the positive real axis' property of the Laplace transform we can write:
$$\mathcal{I}_{\space2\cdot\text{k}+1}=2\cdot\int_0^\infty\mathscr{L}_x\left[\sin\left(x\right)\right]_{\left(\text{s}\right)}\cdot\mathscr{L}_x^{-1}\left[\frac{1}{x^{2\cdot\text{k}+1}}\right]_{\left(\text{s}\right)}\space\text{d}\text{s}=$$ $$2\cdot\int_0^\infty\frac{1}{1+\text{s}^2}\cdot\frac{\text{s}^{2\cdot\text{k}}}{\Gamma\left(2\cdot\text{k}+1\right)}\space\text{d}\text{s}=\frac{2}{\Gamma\left(2\cdot\text{k}+1\right)}\cdot\int_0^\infty\frac{\text{s}^{2\cdot\text{k}}}{1+\text{s}^2}\space\text{d}\text{s}\tag4$$
Using this answer we can write:
$$\mathcal{I}_{\space2\cdot\text{k}+1}=\frac{2}{\Gamma\left(2\cdot\text{k}+1\right)}\cdot\frac{\pi\cdot\sec\left(\pi\cdot\text{k}\right)}{2}=\frac{\pi\cdot\sec\left(\pi\cdot\text{k}\right)}{\Gamma\left(2\cdot\text{k}+1\right)}\tag5$$