Some context first:
A very standard linear problem (LP) is to find $$\inf_P \left( \sum_{1 \leq i,j \leq n} P_{ij} C_{ij}^p \right)^\frac{1}{p}$$ under the constraint that $P$ is doubly stochastic (which forms a convex subset of $n \times n$ matrices).
This for example models a notion of optimal transport between two point clouds with $n$ points, where $C_{ij}$ represent a distance between points $i$ and $j$ and we optimize in the $p$-norm and $P_{ij}$ is the fraction of mass taken from point $i$ and transported to point $j$.
As this is a LP, Choquet's theorem states that some extremal points of the convex set of contraints set are optimal, and Birkhoff's theorem states that these are permutation matrices. It's nice, it means that our optimal "strategies" are one-to-one matchings (more precisely, there are one-to-one matchings that are optimal).
My first question: Consider $p \rightarrow +\infty$ ? The problem becomes $$\inf_P \left\{ \max_{i,j | P_{ij} > 0} C_{ij} \right\}$$ under the same constraint that $P$ is still doubly stochastic.
Basically, my question is: does the Choquet's theorem still hold? Then using Birkhoff theorem I can conclude that there are one-to-one matchings that are optimal.
It seems the result is true (at least the conclusion) by looking at remark 3.6 in http://users.jyu.fi/~peanju/preprints/maxtransport.pdf but the reference [17] given there is a 1926 paper and I fail to see the obvious link with our original problem.
My second question: what if we have countably infinitely many points in the $p = +\infty$ case? It seems the Birkhoff's theorem remains true for "infinite" doubly stochastic matrices https://arxiv.org/pdf/math/0512451.pdf , so once again it's all about the Choquet's theorem:
- For finite $p$, is it true that in "infinite discrete" LP , some extremal points of the constraint polytope (here permutations) belong to the set of optimal solutions? (that might be well known I guess, just need a ref).
- Does it remain true in the $p = +\infty$ case?
I am not expert in optimization/linear programming, so I may miss some terminology (I am pretty sure that problems of the type $\inf \max (..)$ do have a name...). Do not hesitate to give me some bibliography about these.
Here is a result that holds for certain $C$ matrices.
Let $A$ be the set of all doubly stochastic matrices $(P_{ij})$ with countably infinite size. Let $B\subseteq A$ be the set of all countably infinite permutation matrices. Fix $C=(C_{ij})$ with $C_{ij}\geq 0$ for all $i,j \in \{1, 2, 3, ...\}$. We want to know if the following holds: $$ \inf_{P \in A} \sum_{ij} P_{ij}C_{ij} = \inf_{P \in B} \sum_{ij} P_{ij}C_{ij} \quad \mbox{(Eq. 1)} $$ Since $B \subseteq A$ we clearly always have: $$ \inf_{P \in A} \sum_{ij} P_{ij}C_{ij} \leq \inf_{P \in B} \sum_{ij} P_{ij}C_{ij} \quad \mbox{(Eq. 2)} $$
Claim:
The desired equality (1) holds whenever $(C_{ij})$ satisfies \begin{align} &\sum_{i=1}^{\infty} C_{ii} < \infty\\ &\lim_{a\rightarrow\infty} \sum_{i=1}^{a} C_{a+i,i} = 0\\ &\lim_{a\rightarrow\infty} \sum_{i=1}^{a} C_{i, a+i} = 0 \\ &\lim_{a\rightarrow\infty} \sum_{i=a+1}^{2a} \sum_{j=a+1}^{2a} C_{ij}=0 \end{align}
Proof:
Case 1: Suppose $\inf_{P \in A} \sum_{ij}P_{ij}C_{ij}=\infty$. Then (2) implies $\inf_{P \in B} \sum_{ij}P_{ij}C_{ij}=\infty$ and the result holds.
Case 2: Suppose $\inf_{P \in A} \sum_{ij}P_{ij}C_{ij}<\infty$. Define $M=\inf_{P \in A} \sum_{ij}P_{ij}C_{ij}$. By (2) it suffices to show that $$ \inf_{P \in B} \sum_{ij} P_{ij}C_{ij} \leq M$$ To this end, fix $\epsilon>0$. Then there exists a doubly stochastic matrix $P^*=(P_{ij}^*)$ that satisfies $$ \sum_{ij} P_{ij}^*C_{ij} \leq M + \epsilon \quad \mbox{Eq. (3)}$$ By the assumptions on matrix $C$, there is a positive integer $a$ such that \begin{align} &\sum_{i=a+1}^{\infty} C_{ii} \leq \epsilon \quad \mbox{Eq. (4)}\\ &\sum_{i=1}^{a} C_{a+i,i} \leq \epsilon \quad \mbox{Eq. (5)}\\ &\sum_{i=1}^{a} C_{i,a+i} \leq \epsilon \quad \mbox{Eq. (6)} \\ &\sum_{i=a+1}^{2a}\sum_{j=a+1}^{2a} C_{ij} \leq \epsilon \quad \mbox{Eq. (7)} \end{align} Define the $2a \times 2a$ matrix $R$ by \begin{matrix} P_{11}^* & P_{12}^* & P_{13}^* & \cdots & P_{1a}^* & * & 0 & 0& \cdots & 0\\ P_{21}^* & P_{22}^* & P_{23}^*&\cdots & P_{2a}^* & 0 & * & 0& \cdots & 0\\ P_{31}^* & P_{32}^* & P_{33}^* & \cdots & P_{3a}^* & 0 & 0 & * & \cdots & 0 \\ \cdots \\ P_{a1}^* & P_{a2}^* & P_{a3}^* & \cdots & P_{aa}^* & 0 & 0 & 0 & \cdots & *\\ * & 0 & 0 & \cdots & 0 & * & * & * & \cdots & * \\ 0 & * & 0 & \cdots & 0 & * & * & * & \cdots & * \\ 0 & 0& * & \cdots & 0 & * & * & * & \cdots & * \\ \cdots \\ 0 & 0& 0 & \cdots & * & * & * & *& \cdots & * \\ \end{matrix} We can fill in the * entries greedily to ensure that $R=(R_{ij})$ is a doubly stochastic matrix of size $2a \times 2a$. It follows that $R$ is a convex combination of $2a \times 2a$ permutation matrices. In particular, there must be a permutation matrix $G$ of size $2a \times 2a$ such that $$ \sum_{i=1}^{2a}\sum_{j=1}^{2a} G_{ij} C_{ij} \leq \sum_{i=1}^{2a}\sum_{j=1}^{2a} R_{ij}C_{ij} \quad \mbox{(Eq. 8)} $$ Now define $Z$ as the countably infinite permutation matrix that contains $G$ in the upper left block, and the identity map in the lower right block: $$ Z = \left[\begin{matrix} G & 0 \\ 0 & I \end{matrix} \right]$$ Since $Z \in B$ we have \begin{align} \inf_{P \in B} \sum_{ij} P_{ij} C_{ij} &\leq \sum_{ij} Z_{ij}C_{ij} \\ &\overset{(a)}{=} \sum_{i=1}^{2a} \sum_{j=1}^{2a} G_{ij}C_{ij} + \sum_{i=2a+1}^{\infty} C_{ii} \\ &\overset{(b)}{\leq} \sum_{i=1}^{2a} \sum_{j=1}^{2a} R_{ij}C_{ij} + \sum_{i=2a+1}^{\infty} C_{ii} \\ &= \sum_{i=1}^a\sum_{j=1}^a P_{ij}^* C_{ij} + \sum_{i=1}^{a} R_{i,a+i}C_{i,a+i} + \sum_{i=1}^{a} R_{a+i, i} C_{a+i,i} + \sum_{i=a+1}^{2a}\sum_{j=a+1}^{2a} R_{ij}C_{ij} + \sum_{i=2a+1}^{\infty} C_{ii} \\ &\overset{(c)}{\leq} \sum_{i=1}^{\infty}\sum_{j=1}^{\infty} P_{ij}^*C_{ij} + \sum_{i=1}^{a}C_{i,a+i} + \sum_{i=1}^a C_{a+i,i} + \sum_{i=a+1}^{2a}\sum_{j=a+1}^{2a} C_{ij}+ \sum_{i=2a+1}^{\infty} C_{ii} \\ &\overset{(d)}{\leq} M + 5\epsilon \end{align} where (a) holds by definition of $Z$; (b) holds by (8); (c) holds because $0\leq R_{ij}\leq 1$, $P_{ij}^*\geq 0$, $C_{ij}\geq 0$ for all $i, j$; (d) holds by (3)-(7). Hence, for all $\epsilon>0$ we have $$ \inf_{P \in B} \sum_{ij} P_{ij}C_{ij} \leq M + 5\epsilon $$ It follows that $$ \inf_{P \in B} \sum_{ij} P_{ij}C_{ij} \leq M $$ $\Box$