I got this puzzle from some others:
\begin{array}{c c c c c c}&\mathrm H&\mathrm E&\mathrm R&\mathrm E&\mathrm S\\&\mathrm M&\mathrm E&\mathrm R&\mathrm R&\mathrm Y\\+&&\mathrm X&\mathrm M&\mathrm A&\mathrm S\\\hline\mathrm R&\mathrm E&\mathrm A&\mathrm D&\mathrm E&\mathrm R\end{array}
Find the letters such that every letter is a distinct digit, and that there are no leading $0$'s.
We only managed to solve this by breaking it down to some cases and then simply brute forcing it. Is there any way to do this without brute force though?
Answer:
$\mathrm{(A, D, E, H, M, R, S, X, Y)} = (8, 0, 4, 6, 7, 1, 3, 9, 5)$
Code: Try it online
Breakdown of what we managed to get:
We started by noting $\mathrm R$ was either $1$ or $2$.
From the rightmost column, $\mathrm{Y = (R - 2S) \% 10}$.
From the next column, $\mathrm{A = 10 - R - \lfloor 2S+Y \rfloor}$, where the last bit is from a carry digit.
From the next column, $\mathrm{D = (M + 2R + 1) \% 10}$. The $1$ comes from a guaranteed carry digit from the previous column.
From the next column, $\mathrm{X = (A - 2E - \lfloor (M+2R+1)/10 \rfloor) \% 10}$, which also uses a carry.
And from the leftmost column, $\mathrm{H = 10 + E - M - \lfloor (2E+x)/10 \rfloor}$.
Enumerating all such possible values for $\mathrm{R,S,M,E}$, and checking each one, results in the above answer.




An improved approach
From right to left, let the carries be $\alpha,\beta,\gamma,\delta,\epsilon$. Note that no carry can be greater than $2$ and that $\beta$ and $\epsilon$ are no greater than $1$.
$R$ is non-zero and so $R=\epsilon=1$. The first two equations from the right are then \begin{align}2S+Y&=1+10\alpha\\A+1+\alpha&=10\beta\end{align} Noting that $Y$ is odd and greater than $1$, we have the following possibilities.
The remaining equations are \begin{align} M+3&=D+10\gamma,&\gamma\le 1 \tag1 \\ 2E+X+\gamma&=A+10\delta \tag2 \\ H+M+\delta&=10+E \tag3 \end{align} The case $\delta=0$
Consider equation $(2)$. If $E=0$, then $X\ne A$ and so $\gamma=1$. Then $D$ is neither $0$ nor $1$ and so, from $(1)$, $M=9$. Then, from $(3)$, $H=1$, a contradiction. Now $X\ne0$ and so $E$ and $X$ are both at least $2$.
If $A=7$, the only solution of $(2)$ is then $\gamma=0,E=2,X=3$. Then the only possibility for equation $(3)$ is $\{H,M\}=\{4,8\}$ and then $D=M+3=7$ or $11$, a contradiction.
If $A=8$, then $\{S,Y\}$ contains either $2$ or $3$ and so $\{E,X\}\ne \{2,3\}$. The only solution of $(2)$ then gives $\gamma=0,E=2,X=4, R=3,S=5$. Then there is no permissible solution of equation $(3)$.
The case $\delta\ne0$
Adding $(2)$ and $(3)$ gives $$E+H+M+X+\gamma=A+10+9\delta\ge A+19.$$ If $\alpha=2$, then $7$ and either $8$ or $9$ are already allocated and so $E+H+M+X\le 9+6+5+4=24$, a contradiction. Therefore $\alpha=1,A=8$ and either $$\{E,H,M,X\}=\{9,7,6,5\},\gamma=0 \text { or } \{E,H,M,X\}=\{9,7,6,4\},\gamma=1. $$ In the first case, $2E+X=18$ and $X$ is even, then $X=6$ and $E=X$, a contradiction.
In the second case, $2E+X=17$ and $X$ is odd, then $X=9,E=4,M=D+7$. Therefore $D=0,H=6,M=7.$ Finally, the only possibility for $S$ and $Y$ is $S=3,Y=5$.