The complex and quaternionic projective planes are the examples of a closed oriented even dimensional manifold with exactly three non-zero Betti numbers. For more example see the paper ''Rational analogs of projective planes''. In all these cases the middle Betti number is of even degree. Is there any closed oriented even dimensional manifold has exactly three non-zero Betti numbers with middle Betti number has odd degree?
2026-02-22 22:33:33.1771799613
Closed oriented even dimensional manifold with only three non-zero Betti numbers.
234 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in MANIFOLDS
- a problem related with path lifting property
- Levi-Civita-connection of an embedded submanifold is induced by the orthogonal projection of the Levi-Civita-connection of the original manifold
- Possible condition on locally Euclidean subsets of Euclidean space to be embedded submanifold
- Using the calculus of one forms prove this identity
- "Defining a smooth structure on a topological manifold with boundary"
- On the differentiable manifold definition given by Serge Lang
- Equivalence of different "balls" in Riemannian manifold.
- Hyperboloid is a manifold
- Integration of one-form
- The graph of a smooth map is a manifold
Related Questions in HOMOLOGY-COHOMOLOGY
- Are these cycles boundaries?
- Cohomology groups of a torus minus a finite number of disjoint open disks
- $f$ - odd implies $d(f)$ - odd, question to the proof
- Poincarè duals in complex projective space and homotopy
- understanding proof of excision theorem
- proof of excision theorem: commutativity of a diagram
- exact sequence of reduced homology groups
- Doubts about computation of the homology of $\Bbb RP^2$ in Vick's *Homology Theory*
- the quotien space of $ S^1\times S^1$
- Rational points on conics over fields of dimension 1
Related Questions in PROJECTIVE-SPACE
- Visualization of Projective Space
- Poincarè duals in complex projective space and homotopy
- Hyperplane line bundle really defined by some hyperplane
- Hausdorff Distance Between Projective Varieties
- Understanding line bundles on $\mathbb{P}_k^1$ using transition functions
- Definitions of real projective spaces
- Doubts about computation of the homology of $\Bbb RP^2$ in Vick's *Homology Theory*
- Very ample line bundle on a projective curve
- Realize the locus of homogeneous polynomials of degree $d$ as a projective variety.
- If some four of given five distinct points in projective plane are collinear , then there are more than one conic passing through the five points
Related Questions in BETTI-NUMBERS
- Persistence Homology on a grid Distance measure
- Calculating Betti numbers of torus
- What are the Betti numbers of a double pinched torus?
- Relationship between Betti numbers $b_i(M;\mathbb{Q})$ and the dimension of rational homotopy $\dim_{\mathbb{Q}}\pi_i(M)\otimes\mathbb{Q}$
- calculate Betti numbers of a specific polynomial variety
- Top non-zero Betti number of connected manifold of finite type.
- Closed oriented even dimensional manifold with only three non-zero Betti numbers.
- Closed oriented manifold with middle Betti is one with odd degree.
- Betti sum, cup-length, Lusternik-Schnirelmann category, and critical points
- The second Betti number of a group
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Certainly. For instance, for any $n$ (even or odd), $S^n\times S^n$ is a closed orientable manifold of dimension $2n$ whose only nonzero Betti numbers are in degree $0,n$ and $2n$.