The rational cohomology ring of complex projective plane $\mathbb{CP}^{2}$ is truncated polynomial ring $\frac{\mathbb{Q}[X]}{(X)^{3}},\,\,deg(X)=2$. In this case, the degree of a generator is 2. Is there any closed oriented 2m-manifold with the truncated polynomial ring over a single odd degree generator and has exactly three Betti numbers. For example 4m+2-dimensional closed oriented manifold with non-zero Betti numbers are $\beta_{0}=1,\,\beta_{2m+1}=1,\,\beta_{4m+2}=1.$
2026-02-22 22:34:53.1771799693
Closed oriented manifold with middle Betti is one with odd degree.
271 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in POLYNOMIALS
- Alternate basis for a subspace of $\mathcal P_3(\mathbb R)$?
- Integral Domain and Degree of Polynomials in $R[X]$
- Can $P^3 - Q^2$ have degree 1?
- System of equations with different exponents
- Can we find integers $x$ and $y$ such that $f,g,h$ are strictely positive integers
- Dividing a polynomial
- polynomial remainder theorem proof, is it legit?
- Polyomial function over ring GF(3)
- If $P$ is a prime ideal of $R[x;\delta]$ such as $P\cap R=\{0\}$, is $P(Q[x;\delta])$ also prime?
- $x^{2}(x−1)^{2}(x^2+1)+y^2$ is irreducible over $\mathbb{C}[x,y].$
Related Questions in ALGEBRAIC-TOPOLOGY
- How to compute homology group of $S^1 \times S^n$
- the degree of a map from $S^2$ to $S^2$
- Show $f$ and $g$ are both homeomorphism mapping of $T^2$ but $f$ is not homotopy equivalent with $g.$
- Chain homotopy on linear chains: confusion from Hatcher's book
- Compute Thom and Euler class
- Are these cycles boundaries?
- a problem related with path lifting property
- Bott and Tu exercise 6.5 - Reducing the structure group of a vector bundle to $O(n)$
- Cohomology groups of a torus minus a finite number of disjoint open disks
- CW-structure on $S^n$ and orientations
Related Questions in MANIFOLDS
- a problem related with path lifting property
- Levi-Civita-connection of an embedded submanifold is induced by the orthogonal projection of the Levi-Civita-connection of the original manifold
- Possible condition on locally Euclidean subsets of Euclidean space to be embedded submanifold
- Using the calculus of one forms prove this identity
- "Defining a smooth structure on a topological manifold with boundary"
- On the differentiable manifold definition given by Serge Lang
- Equivalence of different "balls" in Riemannian manifold.
- Hyperboloid is a manifold
- Integration of one-form
- The graph of a smooth map is a manifold
Related Questions in HOMOLOGY-COHOMOLOGY
- Are these cycles boundaries?
- Cohomology groups of a torus minus a finite number of disjoint open disks
- $f$ - odd implies $d(f)$ - odd, question to the proof
- Poincarè duals in complex projective space and homotopy
- understanding proof of excision theorem
- proof of excision theorem: commutativity of a diagram
- exact sequence of reduced homology groups
- Doubts about computation of the homology of $\Bbb RP^2$ in Vick's *Homology Theory*
- the quotien space of $ S^1\times S^1$
- Rational points on conics over fields of dimension 1
Related Questions in BETTI-NUMBERS
- Persistence Homology on a grid Distance measure
- Calculating Betti numbers of torus
- What are the Betti numbers of a double pinched torus?
- Relationship between Betti numbers $b_i(M;\mathbb{Q})$ and the dimension of rational homotopy $\dim_{\mathbb{Q}}\pi_i(M)\otimes\mathbb{Q}$
- calculate Betti numbers of a specific polynomial variety
- Top non-zero Betti number of connected manifold of finite type.
- Closed oriented even dimensional manifold with only three non-zero Betti numbers.
- Closed oriented manifold with middle Betti is one with odd degree.
- Betti sum, cup-length, Lusternik-Schnirelmann category, and critical points
- The second Betti number of a group
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Such a manifold does not exist. Suppose that $M$ is $4n+2$ dimensional closed orientable manifold. Then the intersection form on $H^{2n+1}(M,\mathbb{R})$ is symplectic*, hence this vector space has even dimension implying that the Betti number $b_{2n+1}(M) = \dim(H^{2n+1}(M,\mathbb{R}))$ is even.
Maybe such examples can exist if we drop the assumption of orientability.
*The relevant facts to prove this are in Hatcher's book, or if you prefer here the fact that it is skew-symmetric is stated in the first paragraph, that it is non-degenerate is proven in Proposition 1.2, hence it is symplectic.