I see that in most textbooks they say let $R$ be an integral domain and start defining the greatest common divisor. My question is, can gcd's be defined on just commutative rings without an identity?
2025-01-13 09:18:17.1736759897
defining gcd on rings
568 Views Asked by samantha https://math.techqa.club/user/samantha/detail AtRelated Questions in ABSTRACT-ALGEBRA
- Projective Indecomposable modules of quiver algebra
- Binary relations for Cobb-Douglas
- Relations among these polynomials
- Number of necklaces of 16 beads with 8 red beads, 4 green beads and 4 yellow beads
- Page 99 of Hindry's Arithmetics, follows from exact sequence that $\text{N}(IJ) = \text{N}(J)\text{card}(J/IJ)$?
- How to write the identity permutation as a product of transpositions
- Is $H$ a subgroup?
- $x=(0,\overline{1})$ and $y=(0,\overline{2})$ generate the same ideal in $R=\mathbb{Z}\times\mathbb{Z}/5\mathbb{Z}$
- Having some problems with understanding conics and graphing (eccentricity)
- Is this Cayley Diagram contradictory?
Related Questions in RING-THEORY
- $x=(0,\overline{1})$ and $y=(0,\overline{2})$ generate the same ideal in $R=\mathbb{Z}\times\mathbb{Z}/5\mathbb{Z}$
- Show that the quotient ring $R/\mathcal{I}$ is a field.
- Prime ideals $\mathfrak{p} \supset \mathfrak{a}$ are finite in one-dimensional Noetherian domain
- Constructing finite fields of order $8$ and $27$ or any non-prime
- How do I show that the unit group of $\mathbb{Z}\times\mathbb{Z}/5\mathbb{Z}$ is a cyclic group of order 10?
- What is a cubic ideal/partial cubic ideal?
- Surjective ring homomorphism from polynomial to complex numbers
- Generalization of nilpotency in ring theory?
- Give an example of an injective ring homomorphism $f : R \to S$ where $R$ is commutative, but $S$ is not commutative
- Is the ring of formal power series in infinitely many variables a unique factorization domain?
Related Questions in GCD-AND-LCM
- N bits, flip exactly M bits at a time, what is minimum number of operations to get all 0's to all 1's?
- Adding fractions with variables and using common denominator. Merging and shortening $\frac{1}{2a+8} + \frac{4}{a^2-16} + \frac{4}{a-4}$
- How to find the g.c.d when I have another g.c.d
- Finding $\sum_{i = 1}^{n} \frac{n} { \gcd(i, n)}$
- Let $n$ be a positive integer. Prove that if $18|n^3$, then $18|n^2$.
- If $n$ is an odd integer, and $n$ divides $x^2-1$ then $n = \gcd(n, x-1)\cdot\gcd(n, x+1)$
- Prove that if $c|gcd(a,b)$, then $c|a$ and $c|b$.
- If $3|n^3$, does $3|n$?
- Given that $18|n^3$, can we conclude $18|n^2$?
- Show that if $gcd(a,b)|c$ then $ax+by=c$ has infinitely many solutions.
Related Questions in RNGS
- Prove that every rng with a left-side identity has a right-side identity?
- In a ring, how do we prove that a * 0 = 0?
- Ring of even integers considered as module over itself
- Bounding the number of commutative rings with identity of size n
- For $\operatorname{char}(R)=\bar n$ and $\bar m<\bar n$, show that $\bar m\cdot x=0$ is only possible in a "trivial" manner.
- Free $R$-module when $R$ is not unital
- Must this rng be a ring?
- defining gcd on rings
- PRNG for compression
- Nontrivial subring with identity of a ring without identity
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Refuting the Anti-Cantor Cranks
- Find $E[XY|Y+Z=1 ]$
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- What are the Implications of having VΩ as a model for a theory?
- How do we know that the number $1$ is not equal to the number $-1$?
- Defining a Galois Field based on primitive element versus polynomial?
- Is computer science a branch of mathematics?
- Can't find the relationship between two columns of numbers. Please Help
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- A community project: prove (or disprove) that $\sum_{n\geq 1}\frac{\sin(2^n)}{n}$ is convergent
- Alternative way of expressing a quantied statement with "Some"
Popular # Hahtags
real-analysis
calculus
linear-algebra
probability
abstract-algebra
integration
sequences-and-series
combinatorics
general-topology
matrices
functional-analysis
complex-analysis
geometry
group-theory
algebra-precalculus
probability-theory
ordinary-differential-equations
limits
analysis
number-theory
measure-theory
elementary-number-theory
statistics
multivariable-calculus
functions
derivatives
discrete-mathematics
differential-geometry
inequality
trigonometry
Popular Questions
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- How to find mean and median from histogram
- Difference between "≈", "≃", and "≅"
- Easy way of memorizing values of sine, cosine, and tangent
- How to calculate the intersection of two planes?
- What does "∈" mean?
- If you roll a fair six sided die twice, what's the probability that you get the same number both times?
- Probability of getting exactly 2 heads in 3 coins tossed with order not important?
- Fourier transform for dummies
- Limit of $(1+ x/n)^n$ when $n$ tends to infinity