Suppose that $f:X \to Y$ is a branched cover of Riemann surfaces and a covering map of degree one outside of the ramification points. Then is $f$ a homeomorphism?
2026-02-22 15:34:09.1771774449
Degree one branched cover is a homeomorphism
174 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in RIEMANN-SURFACES
- Composing with a biholomorphic function does not affect the order of pole
- open-source illustrations of Riemann surfaces
- I want the pullback of a non-closed 1-form to be closed. Is that possible?
- Reference request for Riemann Roch Theorem
- Biholomorphic Riemann Surfaces can have different differential structure?
- Monodromy representations and geodesics of singular flat metrics on $\mathbb{H}$
- How to choose a branch when there are multiple branch points?
- Questions from Forster's proof regarding unbranched holomorphic proper covering map
- Is the monodromy action of the universal covering of a Riemann surface faithful?
- Riemann sheets for combined roots
Related Questions in COVERING-SPACES
- Definition of regular covering maps: independent of choice of point
- Universal cover $\mathbb{S}^3 \rightarrow SO(3)$ through Quaternions.
- How to find a minimal planar covering of a graph
- Questions from Forster's proof regarding unbranched holomorphic proper covering map
- $\mathbb{S}^2$ and $\mathbb{RP}^2$ are the only compact surfaces with finite number of covers.
- Is the monodromy action of the universal covering of a Riemann surface faithful?
- Left half of complex plane and graph of logarithm are diffeomorphic?
- regular covering proof
- The map $p : S^1 → S^1$ given by $p(z) = z^2$ is a covering map. Generalize to $p(z) = z^n$.
- If $H \le \pi_1(X,x)$ is conjugate to $P_*(\pi_1(Y, y))$, then $H \cong P_*(\pi_1(Y, y'))$ for some $y' \in P^{-1}(x)$
Related Questions in BRANCH-POINTS
- How to choose a branch when there are multiple branch points?
- Branch cut of $\sqrt{z^2 + 1}$
- Understanding the branch cut and discontinuity of the hypergeometric function
- branch cut and branch points for $f(z)=[(z-1)(z-2)]^{1/3}$
- How to find the values of a complex function on either side of a branch cut?
- Image of an analytic function near a branch point
- Approaching a branch point along different paths
- Lagrange interpolation with multiplicities
- Classifying singularities of $\frac {z^{1/2}-1}{\sin{\pi z}}$
- Smooth branch divisor implies smooth covering space
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Yes $f$ is an homeomorphism since the the cardinal of the fibre of a branched point is inferior to the degree. I assume of course that the surfaces are closed.