Suppose $f\in L^2[-1,1]$ and consider the single layer potential with moment $f$ on $[-1,1]$ $$ Kf(x,y) = -\frac{1}{2\pi}\int_{-1}^1 \ln|(x,y) - (\xi,0)|f(\xi)\, d\xi $$ Formally I shown that for $x\in[-1,1]$ $$ \frac{\partial Kf}{\partial y}\bigg|_{y=0} = \frac{f(x)}{2} $$ by differentiating under the integral sign. But I have trouble justifying interchanging the differentiation and integration. As far as I am aware, this is doable if $f\in C^0[-1,1]$ (or maybe $f\in C_c^0[-1,1]$), but I'm not entirely sure if I am allowed to simply abuse the fact that $C^0[-1,1]$ is dense in $L^2[-1,1]$. I am looking for a reference to this result if possible, since layer potential theory is well-studied.
2026-02-22 21:15:14.1771794914
Differentiating the single-layer potential
136 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail AtRelated Questions in MEASURE-THEORY
- On sufficient condition for pre-compactness "in measure"(i.e. in Young measure space)
- Absolutely continuous functions are dense in $L^1$
- I can't undestand why $ \{x \in X : f(x) > g(x) \} = \bigcup_{r \in \mathbb{Q}}{\{x\in X : f(x) > r\}\cap\{x\in X:g(x) < r\}} $
- Trace $\sigma$-algebra of a product $\sigma$-algebra is product $\sigma$-algebra of the trace $\sigma$-algebras
- Meaning of a double integral
- Random variables coincide
- Convergence in measure preserves measurability
- Convergence in distribution of a discretized random variable and generated sigma-algebras
- A sequence of absolutely continuous functions whose derivatives converge to $0$ a.e
- $f\in L_{p_1}\cap L_{p_2}$ implies $f\in L_{p}$ for all $p\in (p_1,p_2)$
Related Questions in PARTIAL-DIFFERENTIAL-EQUATIONS
- PDE Separation of Variables Generality
- Partial Derivative vs Total Derivative: Function depending Implicitly and Explicitly on Variable
- Transition from theory of PDEs to applied analysis and industrial problems and models with PDEs
- Harmonic Functions are Analytic Evan’s Proof
- If $A$ generates the $C_0$-semigroup $\{T_t;t\ge0\}$, then $Au=f \Rightarrow u=-\int_0^\infty T_t f dt$?
- Regular surfaces with boundary and $C^1$ domains
- How might we express a second order PDE as a system of first order PDE's?
- Inhomogeneous biharmonic equation on $\mathbb{R}^d$
- PDE: Determine the region above the $x$-axis for which there is a classical solution.
- Division in differential equations when the dividing function is equal to $0$
Related Questions in INTEGRAL-EQUATIONS
- How to solve the integral equation $f(x) = \int_0^x f(x-y)k(x,y)dy+g(x)$ for $f(x)$?
- Solving for $f\left(\sqrt{x^2+z^2}\right)$ given $g(z)=\int_{-\infty}^{+\infty}{\left(f\left(\sqrt{x^2+z^2}\right)\frac{1}{\sqrt{x^2+z^2}}\right)}dx$
- Approximate solutions to nonlinear differential equations using an integral sequence
- Solving an integral equation by Fourier transform
- Composition of bounded linear operator and an inverse of a linear operator bounded?
- Volterra equation of first kind
- Solution to integral equation involving logarithms
- Importance of compact operators for numerical approximation of integral equations?
- Can integral equations be paired with linear regression to fit a double Gaussian regression?
- Solve $f(x) = \lambda\int_0^\pi(x+y)f(y)\mathrm dy$
Related Questions in POTENTIAL-THEORY
- Clarification for definition of admissible: $\Delta\in (K)$
- Formula for equilibrium measure on [-1,1] for various kernels?
- Showing that a function is harmonic
- logarithmic potential gives out a constant integral over an absolutely continuous measure
- Harmonic functions, equivalence of boundary conditions with phenomena outside domain.
- $W^{2,p}$ estimates for Newtonian potential
- Show that the complex potential is $w(z)=k\ln(z)$
- Functional inequality on $\mathbb{Z}^d$
- Potentials for Vector Fields on a Circle
- Continuity of potential function at an interior point
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?