Imagine that an event has occurred at times $t_1, t_2,…,t_N$, where $t_i < t_{i+1}$. Assuming that the event occurs following a Poisson distribution, what would be the best estimate of $\lambda$, the mean of the distribution? For example, one possible estimate could be $\frac{N}{t_N}$, but this ignores a lot of useful information. I would appreciate your input.
2026-02-22 21:30:27.1771795827
Estimating the mean of a Poisson distribution
318 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in PROBABILITY-THEORY
- Is this a commonly known paradox?
- What's $P(A_1\cap A_2\cap A_3\cap A_4) $?
- Another application of the Central Limit Theorem
- proving Kochen-Stone lemma...
- Is there a contradiction in coin toss of expected / actual results?
- Sample each point with flipping coin, what is the average?
- Random variables coincide
- Reference request for a lemma on the expected value of Hermitian polynomials of Gaussian random variables.
- Determine the marginal distributions of $(T_1, T_2)$
- Convergence in distribution of a discretized random variable and generated sigma-algebras
Related Questions in PROBABILITY-DISTRIBUTIONS
- Given is $2$ dimensional random variable $(X,Y)$ with table. Determine the correlation between $X$ and $Y$
- Statistics based on empirical distribution
- Given $U,V \sim R(0,1)$. Determine covariance between $X = UV$ and $V$
- Comparing Exponentials of different rates
- Linear transform of jointly distributed exponential random variables, how to identify domain?
- Closed form of integration
- Given $X$ Poisson, and $f_{Y}(y\mid X = x)$, find $\mathbb{E}[X\mid Y]$
- weak limit similiar to central limit theorem
- Probability question: two doors, select the correct door to win money, find expected earning
- Calculating $\text{Pr}(X_1<X_2)$
Related Questions in PARAMETER-ESTIMATION
- Question on completeness of sufficient statistic.
- Estimate the square root of the success probability of a Binomial Distribution.
- A consistent estimator for theta is?
- Estimating the mean of a Poisson distribution
- A problem on Maximum likelihood estimator of $\theta$
- The Linear Regression model is computed well only with uncorrelated variables
- Derive unbiased estimator for $\theta$ when $X_i\sim f(x\mid\theta)=\frac{2x}{\theta^2}\mathbb{1}_{(0,\theta)}(x)$
- Is there an intuitive way to see that $\mathbb{E}[X|Y]$ is the least squares estimator of $X$ given $Y$?
- Consistent estimator for Poisson distribution
- estimation of $\mu$ in a Gaussian with set confidence interval
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Apparently, the meaning of this question is as follows: Let $t_1,\dots,t_n$ be the times of the jumps of the Poisson process with intensity $\lambda$, so that $t_j=X_1+\dots+X_j$ for all $j$, where the $X_i$'s are iid random variables with the exponential distribution with mean $1/\lambda$, so that $t_n$ has the Gamma distribution with parameters $n,1/\lambda$. We need to produce a "best" estimator of $\lambda$ based on $t_1,\dots,t_n$ or, equivalently, on $X_1,\dots,X_n$.
To answer this question, note first that \begin{equation} E\frac1{t_n}=\frac{\lambda^n}{\Gamma(n)}\int_0^\infty \frac1x\,x^{n-1}e^{-\lambda x}\,dx=\frac\lambda{n-1}, \end{equation} so that \begin{equation} T_n:=\frac{n-1}{t_n} \end{equation} is an unbiased estimator of $\lambda$, for $n\ge2$. Moreover, $t_n$ is a complete sufficient statistic for $\lambda$ (so, one does not have to worry about losing information on $\lambda$), and $T_n$ is a function of $t_n$. Therefore, $T_n$ is the best -- that is, uniformly minimum variance -- unbiased estimator (UMVUE) of $\lambda$. (This question is a standard exercise in elementary mathematical statistics).