(1) Prove that $\alpha=\sqrt[3]7+2i$ is algebraic over $\mathbb{Q}.$
(2) Prove that both $\sqrt[3]7, 2i$ are elements of $\mathbb{Q}(\alpha)$.
(3) Compute $[\mathbb{Q}(\alpha):\mathbb{Q}]$.
(4) Find the minimal polynomial in $\mathbb{Q}[x]$.
Here is my attempt on each question
$x=\sqrt[3]7+2i$
$x-2i=\sqrt[3]7$
$(x-2i)^3=7$
$x^3-12x-7=6ix^2-8i$
$(x^3-12x-7)^2=(6ix^2-8i)^2$
$x^6+12x^4-14x^3+48x^2+168x+113=0$Let $\beta=\sqrt[3]7-2i$
$\alpha+\beta=\sqrt[3]7$
$\alpha-\beta=4i$
I tried to use the fact $(\alpha+\beta)^3=7, (\alpha+\beta)^2=-16\in \mathbb{Q}$
To show $\beta \in \mathbb{Q}(\alpha)$, but it wasn't successful so farFrom (2), $\sqrt[3]7, i \in \mathbb{Q}(\alpha)$ and it's trivial that any new elment of field $\mathbb{Q}(\alpha)$ generated by $\alpha$ can be written with {$1, \sqrt[3]7, \sqrt[3]{7^2}, i, \sqrt[3]7i , \sqrt[3]{7^2}i$} and vice versa, i.e. $S=\mathbb{Q}(1, \sqrt[3]7, \sqrt[3]{7^2}, i, \sqrt[3]7i , \sqrt[3]{7^2}i) = \mathbb{Q}(\alpha)$
Also,{$1, \sqrt[3]7, \sqrt[3]{7^2}, i, \sqrt[3]7i , \sqrt[3]{7^2}i$} are linearly independent over $\mathbb{Q}$.
Therefore, $[\mathbb{Q}(\alpha):\mathbb{Q}]=6$$p(x)=x^6+12x^4-14x^3+48x^2+168x+113$ from (1) is the minimal polynomial.
$p(x)$ is a monic polynomial over $\mathbb{Q}$. To show it is irreducible over $\mathbb{Q}$,
reducing mod 3 yields $x^6-2x^3+2$. This factors over $\mathbb{Z}_3$ if and only if
it has a root in $\mathbb{Z_3}$, but it doesn't have a root. Hence, $p(x)$ is irreducible over $\mathbb{Z_3}$, so it is irreducible over $\mathbb{Q}$.
Any idea on question 2 or is there anything to fix in other questions?
For $2:$
Given that: $$x^6+12x^4-14x^3+48x^2+168x+113=(x^3-12x-7)^2+(6x^2-8)^2,$$ you have that:
$$\left(\frac{\alpha^3-12\alpha-7}{6\alpha^2-8}\right)^2=-1,$$
at least as long as you can show that $6\alpha^2\neq 8.$
This means that $$\frac{\alpha^3-12\alpha-7}{6\alpha^2-8}=\pm i$$ and hence $i\in\mathbb Q(\alpha)$.
For (3-4): Since $\mathbb Q(i)\subseteq \mathbb Q(\alpha)$ and $\mathbb Q(\sqrt[3]7)\subseteq \mathbb Q(\alpha)$, you have that $[Q(\alpha):\mathbb Q]$ must be divisible to $3$ and $2$, and thus be divisible by $6$.
But your polynomial also gives us that $[\mathbb Q(\alpha):\mathbb Q]\leq 6$.
So $\mathbb Q(\alpha):\mathbb Q]=6$, and thus the minimal polynomial of $\alpha$ must be degree $6$.