My question is regarding the special cases of the Light's Out puzzle: http://mathworld.wolfram.com/LightsOutPuzzle.html
I'm considering special scenarios of the puzzle in which the puzzle can be solved by simply toggling all the switches that are 'ON' (indicated as 1 on a matrix) at the beginning.
For the 2x2 configuration, we have: $\begin{bmatrix}1 & 0\\0 & 1\end{bmatrix}$, $\begin{bmatrix}0 & 1\\1 & 0\end{bmatrix}$,$\begin{bmatrix}1 & 1\\1 & 1\end{bmatrix}$ and $\begin{bmatrix}0 & 0\\0 & 0\end{bmatrix}$.
For the 3x3 configuration, a simple script reveals 8 of such scenarios:
$\begin{bmatrix}1 & 0 &0\\0 & 1 &0 \\ 0&0&1\end{bmatrix}$,$\begin{bmatrix}0 & 0 &1\\0 & 1 &0 \\ 1&0&0\end{bmatrix}$,$\begin{bmatrix}0 & 0 &0\\0 & 0 &0 \\ 0&0&0\end{bmatrix}$,$\begin{bmatrix}0 & 1 &1\\1 & 1 &1 \\ 1&1&0\end{bmatrix}$,$\begin{bmatrix}1 & 0 &1\\0 & 0 &0 \\ 1&0&1\end{bmatrix}$,$\begin{bmatrix}0 & 1 &0\\1 & 0 &1 \\ 0&1&0\end{bmatrix}$,$\begin{bmatrix}1 & 1 &0\\1 & 1 &1 \\ 0&1&1\end{bmatrix}$ and
$\begin{bmatrix}1 & 1 &1\\1 & 0 &1 \\ 1&1&1\end{bmatrix}$
Is there a more efficent way of finding the number of such scenarios for 4x4 and higher configurations? My script takes forever.
Suppose $B$ is the matrix that satisfies your condition. For any entry in $B$, notice that it must have an even number of neighbors equal to 1:
It should not be hard to convince yourself that a matrix is is in your scenario if and only if for every entry in the matrix the number of neighbors equal to 1 is even. Equivalently, this is the same as saying that the sum of the neighbors of each entry is 0 mod 2.
As in the link in the OP, you can set up a system of linear equations over $GF(2)$ with this set of conditions and solve it. For example, when $n=3$ we get nine equations: $$\begin{eqnarray*} x_{12} + x_{21} & = & 0\\ x_{11} + x_{13} + x_{22} & = & 0\\ x_{12} + x_{23} & = & 0\\ x_{11} + x_{22} + x_{31} & = & 0\\ x_{12} + x_{21} + x_{23} + x_{32} & = & 0\\ x_{13} + x_{22} + x_{33} & = & 0\\ x_{21} + x_{32} & = & 0\\ x_{22} + x_{31} + x_{33} & = & 0\\ x_{23} + x_{32} & = & 0 \end{eqnarray*} $$
The set of solutions of this system of equations are generated by the matrices:
$\left(\begin{matrix} 1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end{matrix}\right)$ $\left(\begin{matrix} 0 & 1 & 0\\1 & 0 & 1\\0 & 1 & 0\end{matrix}\right)$ $\left(\begin{matrix} 0 & 0 & 1\\0 & 1 & 0\\1 & 0 & 0\end{matrix}\right)$
This is consistent with the observation of @krirkrirk above.
Using the same technique with $n=4$, we find all solutions are generated by:
$\left(\begin{matrix}1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{matrix}\right)$ $\left(\begin{matrix}0&1&0&0\\1&0&1&0\\0&1&0&1\\0&0&1&0\end{matrix}\right)$ $\left(\begin{matrix}0&0&1&0\\0&1&0&1\\1&0&1&0\\0&1&0&0\end{matrix}\right)$ $\left(\begin{matrix}0&0&0&1\\0&0&1&0\\0&1&0&0\\1&0&0&0\end{matrix}\right)$
And with $n=5$ we obtain:
$\left(\begin{matrix}1&0&0&0&0\\0&1&0&0&0\\0&0&1&0&0\\0&0&0&1&0\\0&0&0&0&1\end{matrix}\right)$ $\left(\begin{matrix}0&1&0&0&0\\1&0&1&0&0\\0&1&0&1&0\\0&0&1&0&1\\0&0&0&1&0\end{matrix}\right)$ $\left(\begin{matrix}0&0&1&0&0\\0&1&0&1&0\\1&0&1&0&1\\0&1&0&1&0\\0&0&1&0&0\end{matrix}\right)$ $\left(\begin{matrix}0&0&0&1&0\\0&0&1&0&1\\0&1&0&1&0\\1&0&1&0&0\\0&1&0&0&0\end{matrix}\right)$ $\left(\begin{matrix}0&0&0&0&1\\0&0&0&1&0\\0&0&1&0&0\\0&1&0&0&0\\1&0&0&0&0\end{matrix}\right)$