Problem
I have to prove the following:
Let $X$ and $Y$ be independent continuous random variables with density function $f:\mathbb R\to\mathbb R$. \ Prove that $(X,X+Y)$ is a continuous bivariate random variable with density function $f_{X,X+Y}(x,z)=f(x)f(z-x)$.
My thoughts
Look at $$\mathbb{P}(X\leqslant x,X+Y\leqslant z)=\mathbb{P}(X\leqslant x,Y\leqslant z-x)=\int_{-\infty}^{z-x}\int_{-\infty}^x f_{X,Y}(u,v)\,du\,dv.$$ Since $X$ en $Y$ are independent and have the same density function, we have $f_{X,Y}(u,v)=f(u)f(v)$, so $$=\int_{-\infty}^{z-x}\int_{-\infty}^x f(u)f(v)\,du\,dv=\int_{-\infty}^{z-x} f(v)\left(\int_{-\infty}^x f(u)\,du\right)dv=\int_{-\infty}^{z-x} f(v)\,dv\cdot \int_{-\infty}^x f(u)\,du$$ Now I feel like I am very close, but we can't use the FTC since $f$ is not necessarily continuous (only right continuous). This might be a stupid question, but I don't know how to proceed
$$ \Pr(X\le x\ \&\ X+Y\le z) = \int_{-\infty}^x \int_{-\infty}^{z\,-\,u} f_{X,\,Y} (u,v) \, dv \, du = \int_{-\infty}^x \int_{-\infty}^{z-u}f(u)f(v) \, dv\,du $$
For any particular value $u$ that the random variable $X$ can assume between $-\infty$ and the value $x$ being considered, the value of $X+Y = u+Y$ is $\le z$ precisely if $Y\le z-u.$
Next we have \begin{align} & \int_{-\infty}^x \int_{-\infty}^{z\,-\,u} f(u) f(v) \, dv \, du = \int_{-\infty}^x \int_{-\infty}^z f(u)f(v-u) \, dv\,du \\[10pt] \text{because } & \int_{-\infty}^{z-u} f(v)\,dv = \int_{-\infty}^z f(v-u)\, du \text{ by routine substitution.} \end{align} Then we will have $$ \Pr(X\le x\ \&\ X+Y\le z) = \int_{-\infty}^x \int_{-\infty}^z f(u) f(v-u) \,dv\,du $$ and that implies that the function being integrated on the right side is the density of $(X,\,X+Y).$