So if I have points $A(2, 6,-1)$ and $B(-3, 2, 8)$ that create vector $\vec{AB}$. I want to create perpendicular vector $\vec{AC}$, which has the same starting point $A$ and then unknown end point $C(x, y, z)$. If I also knew that $\vec{AC}$ has magnitude $3$, how do I then determine the point $C$?
2026-02-22 19:50:21.1771789821
Finding a vector perpendicular to a given vector in 3 dimensional space
39 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in VECTORS
- Proof that $\left(\vec a \times \vec b \right) \times \vec a = 0$ using index notation.
- Constrain coordinates of a point into a circle
- Why is the derivative of a vector in polar form the cross product?
- Why does AB+BC=AC when adding vectors?
- Prove if the following vectors are orthonormal set
- Stokes theorem integral, normal vector confusion
- Finding a unit vector that gives the maximum directional derivative of a vector field
- Given two non-diagonal points of a square, find the other 2 in closed form
- $dr$ in polar co-ordinates
- How to find reflection of $(a,b)$ along $y=x, y = -x$
Related Questions in ANALYTIC-GEOMETRY
- Asymptotes of hyperbola
- Position of point with respect to hyperbola
- Length of Shadow from a lamp?
- Show that the asymptotes of an hyperbola are its tangents at infinity points
- Surface by revolution
- All possible values of coordinate k such that triangle ABC is a right triangle?
- Triangle inside triangle
- Is there an equation to describe regular polytopes?
- How do I prove that the gradient between a fixed and any general point on a given line is $m$?
- Three-Dimensional coordinate system
Related Questions in INNER-PRODUCTS
- Inner Product Same for all Inputs
- How does one define an inner product on the space $V=\mathbb{Q}_p^n$?
- Inner Product Uniqueness
- Is the natural norm on the exterior algebra submultiplicative?
- Norm_1 and dot product
- Is Hilbert space a Normed Space or a Inner Product Space? Or it have to be both at the same time?
- Orthonormal set and linear independence
- Inner product space and orthogonal complement
- Which Matrix is an Inner Product
- Proof Verification: $\left\|v-\frac{v}{\|v\|}\right\|= \min\{\|v-u\|:u\in S\}$
Related Questions in SOLID-GEOMETRY
- Looking for hints on the below 3D geometry problem.
- What are the tangent planes of the sphere B, which contains the line L?
- What is the name of the polyhedral shape of the Humanity Star?
- Point to line distance in 3D?
- Joining the centers of the edges of Platonic solids
- Geometry of a d10
- Finding a vector perpendicular to a given vector in 3 dimensional space
- Compute the dihedral angle of a regular pyramid
- Intuition of angle between two planes
- Find the equation of the plane which bisects the pair of planes $2x-3y+6z+2=0$ and $2x+y-2z=4$ at acute angles.
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Let $\vec{AC}(a,b,c)$.
Thus, $a^2+b^2+c^2=9$ and since $$\vec{AB}(-5,-4,9),$$ we obtain: $$-5a-4b+9c=0$$ and we got infinitely many these vectors and these points $C$.
If we want that $AC||DE$, where $\vec{DE}(14,5,3)$ then $a=14k$,$b=5k$, $c=3k$ and you can check if this possible.