Is there any chance to express the series $$S=\sum_2^{\infty}\frac{\ln(n+1)}{(n^2-1)}$$ in terms of a known function?
My idea is to start from the generalized-Euler-constant function (http://arxiv.org/abs/math/0610499): $$\gamma(z)=\sum_1^{\infty}z^{n-1}\left( \frac1n-\log \frac{n+1}{n}\right)$$ Any hint?
Not a closed form, but a numerical evaluation. $$ \begin{align} \sum_{k=2}^\infty\frac{\log(k+1)}{k^2-1} &=\frac12\sum_{k=2}^\infty\log(k+1)\left(\frac1{k-1}-\frac1{k+1}\right)\\ &=\frac12\lim_{n\to\infty}\left(\sum_{k=2}^n\frac{\log(k+1)}{k-1}-\sum_{k=2}^n\frac{\log(k+1)}{k+1}\right)\\ &=\frac12\lim_{n\to\infty}\left(\sum_{k=1}^{n-1}\frac{\log(k+2)}k-\sum_{k=3}^{n+1}\frac{\log(k)}k\right)\\ &=\frac{\log(2)}4+\frac12\sum_{k=1}^\infty\frac{\log\left(1+\frac2k\right)}k\\ \end{align} $$ Using the Euler-Maclaurin Sum Formula with an error of $O\left(\frac1{k^{23}}\right)$ and using $1000$ terms of the series, we get that $$ \begin{align} &\sum_{k=2}^\infty\frac{\log(k+1)}{k^2-1}\\ &=\frac{\log(2)}4+\frac12\sum_{k=1}^\infty\frac{\log\left(1+\frac2k\right)}k\\ &\approx 1.232969586009636405434158525257658981115253440057209139211078744 \end{align} $$