I'm looking for strategies for evaluating the following sums for given $z$ and $m$: $$ \mathcal{S}_m(z):=\sum_{n=1}^\infty \frac{H_n^{(m)}z^n}{n}, $$ where $H_n^{(m)}$ is the generalized harmonic number, and $|z|<1$, $m \in \mathbb{R}$.
Using the generating function of the generalized harmonic numbers, an equivalent problem is to evaluate the following integral: $$ \mathcal{S}_m(z) = \int_0^z \frac{\operatorname{Li}_m(t)}{t(1-t)}\,dt, $$ where $\operatorname{Li}_m(t)$ is the polylogarithm function, and $|z|<1$, $m \in \mathbb{R}$.
Question 1: Are there any way to reduce the sum to Euler sum values, given by Flajolet–Salvy paper?
Question 2: Are there any way to reduce the integral to integrals given by Freitas paper?
The case $m=1$ and $z=1/2$ was the problem 1240 in Mathematics Magazine, Vol. 60, No. 2, pp. 118–119. (Apr., 1987) by Coffman, S. W. $$ \mathcal{S}_1\left(\tfrac12\right)=\sum_{n=1}^\infty \frac{H_n}{n2^n} = \frac{\pi^2}{12}. $$ There are several solutions in the linked paper.
The more interesting case $m=2$ and $z=1/2$ is listed at Harmonic Number, MathWorld, eq. $(41)$: $$ \mathcal{S}_2\left(\tfrac12\right)=\sum_{n=1}^\infty \frac{H_n^{(2)}}{n2^n} = \frac{5}{8}\zeta(3). $$
We know less about the evaluation. At the MathWorld it is marked as "B. Cloitre (pers. comm., Oct. 4, 2004)". This value is also listed at pi314.net, eq. $(701)$. Unfortunately, I don't know about any paper/book reference for this value. It would be nice to see some.
Question 3: How could we evaluate the case $m=2$, $z=1/2$?
It would be nice to see a solution for the sum form, but also solutions for the integral form are welcome.
About quesiton 3, we have $$\sum_{n\geq1}\frac{H_{n}^{\left(2\right)}}{n2^{n}}=\int_{0}^{1/2}\frac{\textrm{Li}_{2}\left(x\right)}{x\left(1-x\right)}dx=\int_{0}^{1/2}\frac{\textrm{Li}_{2}\left(x\right)}{x}dx+$$ $$+\int_{0}^{1/2}\frac{\textrm{Li}_{2}\left(x\right)}{1-x}dx=\textrm{Li}_{3}\left(\frac{1}{2}\right)+\int_{0}^{1/2}\frac{\textrm{Li}_{2}\left(x\right)}{1-x}dx $$ now note that, using integration by parts $$\int_{0}^{1/2}\frac{\textrm{Li}_{2}\left(x\right)}{1-x}dx=-\log\left(\frac{1}{2}\right)\textrm{Li}_{2}\left(\frac{1}{2}\right)-\int_{0}^{1/2}\frac{\log^{2}\left(1-x\right)}{x}dx.$$ So let analyze $$J=\int_{0}^{1/2}\frac{\log^{2}\left(1-x\right)}{x}dx $$ using integration by parts few times $$J=\log^{2}\left(\frac{1}{2}\right)\log\left(\frac{1}{2}\right)+2\int_{0}^{1/2}\frac{\log\left(1-x\right)\log\left(x\right)}{1-x}dx= $$ $$=\log^{2}\left(\frac{1}{2}\right)\log\left(\frac{1}{2}\right)+2\textrm{Li}_{2}\left(\frac{1}{2}\right)\log\left(\frac{1}{2}\right)+2\int_{1/2}^{1}\frac{\textrm{Li}_{2}\left(u\right)}{u}du $$ $$=\log^{2}\left(\frac{1}{2}\right)\log\left(\frac{1}{2}\right)+2\textrm{Li}_{2}\left(\frac{1}{2}\right)\log\left(\frac{1}{2}\right)+2\zeta\left(3\right)-2\textrm{Li}_{3}\left(\frac{1}{2}\right) $$ so we have $$\sum_{n\geq1}\frac{H_{n}^{\left(2\right)}}{n2^{n}}=3\textrm{Li}_{3}\left(\frac{1}{2}\right)-3\log\left(\frac{1}{2}\right)\textrm{Li}_{2}\left(\frac{1}{2}\right)-\log^{2}\left(\frac{1}{2}\right)\log\left(\frac{1}{2}\right)-2\zeta\left(3\right)= $$ $$=\frac{5\zeta\left(3\right)}{8}. $$