If $a$, $b$, and $c$ are the three sidelengths of an arbitrary triangle, prove that the following inequality is true, with equality for equilateral triangles.
$$ 7\left(a+b+c\right)^3-9\left(a+b+c\right)\left(a^2+b^2+c^2\right)-108abc\ge0 \tag{1}$$
In expanded form: $$ 6\left(a^2b+a^2c+b^2a+b^2c+c^2a+c^2b \right)-\left(a^3+b^3+c^3\right)-33abc\ge0 \tag{2}$$
This a part of an ongoing research in triangle geometry and related to solving a cubic equation.
By AM-GM $$\frac{a_1+\cdots+a_n}{n}\geq\sqrt[n]{a_1\cdots a_n}$$ Since $a,~ b,~ c$ are positive real numbers $$\frac{a^3+b^3+c^3}{3}\geq\sqrt[3]{a^3b^3c^3}=abc$$ $$a^3+b^3+c^3\geq3abc$$ $$2(a^3+b^3+c^3)\geq6abc\tag{1}$$ Now we want to prove that $$2a^2(b + c) + 2b^2(c + a) + 2c^2(a + b) ≥ a^3 + b^3 + c^3 + 9abc\tag{2}$$ First let $$ \begin{cases} a = y + z \\ b = z + x \\ c = x + y \end{cases} $$ With $x,~y,~z\geq0$, then the left side of $(2)$ becomes $$4x^3 + 4y^3 + 4z^3 + 10x^2(y + z) + 10y^2(z + x) + 10z^2(x + y) + 24xyz$$ And the right side becomes $$2x^3 + 2y^3 + 2z^3 + 12x^2(y + z) + 12y^2(z + x) + 12z^2(x + y) + 18xyz$$ Further simplify we have $$x^3 + y^3 + z^3 + 3xyz ≥ x^2(y + z) + y^2(z +x) + z^2(x + y)$$ which is Schur's inequality, so we have proved that $(2)$ holds true.
From $(2)$ we have $$6(a^2(b + c) + b^2(c + a) + c^2(a + b)) ≥ 3(a^3 + b^3 + c^3) + 27abc\tag{3}$$ Add $(1)$ and $(3)$ $$6\left(a^2b+a^2c+b^2a+b^2c+c^2a+c^2b \right)+2(a^3+b^3+c^3)\ge 3(a^3+b^3+c^3)+33abc$$ $$ 6\left(a^2b+a^2c+b^2a+b^2c+c^2a+c^2b \right)-\left(a^3+b^3+c^3\right)-33abc\ge0 $$ and we're done.