I'm reading a proof, and I cannot figure out why the following is true:
If $\vert x - a \vert < \frac{1}{2}\vert a\vert$, then $\frac{1}{2}\vert a\vert < \vert x \vert$
(x and a are reals, of course). I've tried using the triangle inequality every which way, but I just can't prove the result. Please prove that the statement is correct.
Edit: Apologies. Changed the first ">" to "<".
$\vert x-a\vert<\frac12\vert a\vert$ is equivalent with $$a-\frac12\vert a\vert < x<a+\frac12\vert a \vert.$$ If $a>=0$ then $\vert a\vert= a$ so $$\frac12\vert a\vert<x<\frac32\vert a\vert.$$ If $a<0$ then $\vert a\vert= -a$ so $$\frac32a<x<\frac12 a.$$ And hence $x<0$, so $\vert x\vert = -x$. Thus $$\frac12\vert a\vert<\vert x\vert<\frac32\vert a\vert.$$
Hope this helps.