Let $ABC$ be a triangle, $P$ be a point in the plane, $A'B'C'$ be the cevian triangle of $P$. Let point $A_b$ chosen on $CA$, point $A_c$ chosen on $AB$ such that $A'A_bA_c$ be an equilateral triangle and $A'A_bA_c$ with the same orientation than $ABC$. Let point $B_c$ chosen on $AB$, point $B_a$ chosen on $BC$ such that $B'B_cB_a$ be an equilateral triangle and $B'B_cB_a$ with the same orientation than $ABC$. Let point $C_a$ chosen on $BC$, point $C_b$ chosen on $AC$ such that $C'C_aC_b$ be an equilateral triangle and $C'C_aC_b$ with the same orientation than $ABC$. How can show that centroids of three equilateral triangles $A'A_bA_c$, $B'B_cB_a$, $B'B_cB_a$ are collinear?
2026-02-22 23:10:52.1771801852
How can prove that centroids of three equilateral triangles are collinear
225 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in GEOMETRY
- Point in, on or out of a circle
- Find all the triangles $ABC$ for which the perpendicular line to AB halves a line segment
- How to see line bundle on $\mathbb P^1$ intuitively?
- An underdetermined system derived for rotated coordinate system
- Asymptotes of hyperbola
- Finding the range of product of two distances.
- Constrain coordinates of a point into a circle
- Position of point with respect to hyperbola
- Length of Shadow from a lamp?
- Show that the asymptotes of an hyperbola are its tangents at infinity points
Related Questions in EUCLIDEAN-GEOMETRY
- Visualization of Projective Space
- Triangle inequality for metric space where the metric is angles between vectors
- Circle inside kite inside larger circle
- If in a triangle ABC, ∠B = 2∠C and the bisector of ∠B meets CA in D, then the ratio BD : DC would be equal to?
- Euclidean Fifth Postulate
- JMO geometry Problem.
- Measure of the angle
- Difference between parallel and Equal lines
- Complex numbers - prove |BD| + |CD| = |AD|
- Find the ratio of segments using Ceva's theorem
Related Questions in TRIANGLES
- Triangle inside triangle
- If in a triangle ABC, ∠B = 2∠C and the bisector of ∠B meets CA in D, then the ratio BD : DC would be equal to?
- JMO geometry Problem.
- The length of the line between bisector's endings
- Is there any tri-angle ?
- Properties of triangles with integer sides and area
- Finding the centroid of a triangle in hyperspherical polar coordinates
- Prove triangle ABC is equilateral triangle given that $2\sin A+3\sin B+4\sin C = 5\cos\frac{A}{2} + 3\cos\frac{B}{2} + \cos\frac{C}{2}$
- Complex numbers - prove |BD| + |CD| = |AD|
- Area of Triangle, Sine
Related Questions in CENTROID
- Finding the centroid of a triangle in hyperspherical polar coordinates
- How to find the center of mass for a system of multiple solid spheres?
- Centroid in a Poincare disk model
- Center of mass versus center of surface
- Centroid formula ($\bar y$) integral - why difference of squares, rather than squared difference?
- Is the Centroid and Circumcenter of a triangle affine invariant?
- Complex Numbers: Triangle and Centroid
- Will moving towards the centroid of a triangle make us meet?
- In a circle $C(O(0,0),1)$ with a polygon inscribed $A_1A_2...A_n$
- Centroid of an Area Between Two Curves by Calculus
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?

Given some $V_C\in AB$, there is a unique equilateral triangle inscribed in $ABC$ with a vertex at $V$: its other vertices $V_A,V_B$ are given by the intersection of $BC$ with the line $AC$ rotated by $60^\circ$ clockwise around $V_C$, the intersection of $AC$ with the line $BC$ rotated by $60^\circ$ counter-clockwise around $V_C$. In particular $V_A=f(V_C)$ and $V_B=g(V_C)$ with $f,g$ being affine maps. This implies that the centroid of $V_A V_B V_C$, i.e. $\frac{V_A+V_B+V_C}{3}$, lies on a line.