On the Exercise they give that:
$||\vec{a}|| = ||\vec{c}|| = 5$
$||\vec{b}||= 1$
$ \alpha = \angle(\vec{a},\vec{b}) = \frac\pi8 $
$|| \vec{a} + \vec{b} + \vec{c}|| = || \vec{a} - \vec{b} + \vec{c}|| $
And the exercise wants to know the angle $\theta = \angle(\vec{b},\vec{c},)$
The answer is $\frac78\pi$, but I don't know how to get there, can someone please help me?
Since $|| \vec{a} + \vec{b} + \vec{c}|| = || \vec{a} - \vec{b} + \vec{c}|| $ we can get from here that: $$(\vec{a}+\vec{c}).\vec{b}=0\to \vec{b}.\vec{c}=-\vec{a}.\vec{b}$$ also $$\vec{a}.\vec{b}=|\vec{a}||\vec{b}|\cos{\theta_{ab}}=5\cos\frac{\pi}{8}$$therefore $$\vec{b}.\vec{c}=-5\cos\frac{\pi}{8}=5\cos\frac{7\pi}{8}=|\vec{b}||\vec{c}|\cos{\theta_{bc}}$$. So we have $$\theta_{bc}=\frac{7\pi}{8}$$