If I have two normally distributed graphs, one with a mean of 70 and standard deviation of 3, and the other with a mean of 74 and standard deviation of 4.5, how would I go about calculating the probability of a random point from the first distribution being 2 larger than a random point on the second distribution?
2026-02-22 21:28:15.1771795695
How do you calculate the probability of the difference between two normal distribution
13k Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in STATISTICS
- Given is $2$ dimensional random variable $(X,Y)$ with table. Determine the correlation between $X$ and $Y$
- Statistics based on empirical distribution
- Given $U,V \sim R(0,1)$. Determine covariance between $X = UV$ and $V$
- Fisher information of sufficient statistic
- Solving Equation with Euler's Number
- derive the expectation of exponential function $e^{-\left\Vert \mathbf{x} - V\mathbf{x}+\mathbf{a}\right\Vert^2}$ or its upper bound
- Determine the marginal distributions of $(T_1, T_2)$
- KL divergence between two multivariate Bernoulli distribution
- Given random variables $(T_1,T_2)$. Show that $T_1$ and $T_2$ are independent and exponentially distributed if..
- Probability of tossing marbles,covariance
Related Questions in PROBABILITY-DISTRIBUTIONS
- Given is $2$ dimensional random variable $(X,Y)$ with table. Determine the correlation between $X$ and $Y$
- Statistics based on empirical distribution
- Given $U,V \sim R(0,1)$. Determine covariance between $X = UV$ and $V$
- Comparing Exponentials of different rates
- Linear transform of jointly distributed exponential random variables, how to identify domain?
- Closed form of integration
- Given $X$ Poisson, and $f_{Y}(y\mid X = x)$, find $\mathbb{E}[X\mid Y]$
- weak limit similiar to central limit theorem
- Probability question: two doors, select the correct door to win money, find expected earning
- Calculating $\text{Pr}(X_1<X_2)$
Related Questions in NORMAL-DISTRIBUTION
- Expectation involving bivariate standard normal distribution
- How to get a joint distribution from two conditional distributions?
- Identity related to Brownian motion
- What's the distribution of a noncentral chi squared variable plus a constant?
- Show joint cdf is continuous
- Gamma distribution to normal approximation
- How to derive $E(XX^T)$?
- $\{ X_{i} \}_{i=1}^{n} \thicksim iid N(\theta, 1)$. What is distribution of $X_{2} - X_{1}$?
- Lindeberg condition fails, but a CLT still applies
- Estimating a normal distribution
Related Questions in STANDARD-DEVIATION
- Statistics question using normal distribution
- Is the usage of unbiased estimator appropriate?
- How do you calculate the probability of the difference between two normal distribution
- Does the null hypothesis always conform to a normal distribution?
- How to tell when a data series is a normal distribution
- Average and standard deviation equation system
- Linear interpolation of over time of standard deviation measurements
- Understanding a probability theory term "deviation"
- A baseball player hits the ball 35% of the time. In 10 opportunities, what is the probability of connecting more than 2 hits?
- Problem when Multiplying Sample Distributions
Related Questions in MEANS
- Arithmetic and harmonic mean of two numbers.
- Mean and variance of $X:=(k-3)^2$ for $k\in\{1,\ldots,6\}$.
- Reason generalized linear model
- How do you calculate the probability of the difference between two normal distribution
- Compute the variance of $S = \sum\limits_{i = 1}^N X_i$, what did I do wrong?
- Find out if $\hat{\tau}$ is an unbiased estimator
- Computing mean and variance of custom distribution
- Prove $\lim\limits_{n \to \infty} \frac{\log (n!)}{n \sqrt[n]{\log 2 \cdot \log 3 \cdots \log n}}=1$
- How to tell when a data series is a normal distribution
- Nice mean for negative Numbers
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
I will show how to work a similar problem, and let you make the required changes for your own problem. I hope you can use my work for the alternative problem as an outline for doing yours. Please check each step with formulas and theorems in your text or notes.
Alternative Problem: Suppose $X \sim \mathsf{Norm}(70, 3)$ and (independently) $Y \sim \mathsf{Norm}(74, 4).$ [The second argument in my notation $\mathsf{Norm}$ is the standard deviation.] Then find the distribution of $D = X - Y$ and $P(D > 2).$
Mean of the sum (or difference) of two random variables. A general formula states that $E(aX + bY) = aE(X) + bE(Y).$ In the current problem $a = 1$ and $b = -1,$ so $E(X+Y) = 70-74 = -4.$
Variance of the sum (or difference) of two independent random variables. Another general formula states that for independent random variables $X$ and $Y,$ one has $Var(aX + bY) = a^2Var(X) + b^2Var(Y).$ In the current problem, this gives $Var(X - Y) = 3^2 + 4^2 = 25,$ so $SD(X - Y) = \sqrt{25} = 5.$ Notice that the variances are added even though one random variable is subtracted from the other.
Distribution of the sum of independent normal random variables. A third general result states that the sum (or difference) of two independent normal random variables is is another normal random variable with mean and SD given by the two relationships above. Thus $D = X - Y \sim \mathsf{Norm}(-4, 5).$
The last step is to use software or printed standard normal tables to find $P(D > 2).$ [If you use standard normal tables, you will have to standardize $D.$ I assume you have done that before.] The answer to the current problem (from software) is $P(D > 2) = 0.1149.$ Because $Y$ has a larger mean than $X,$ it is not surprise that this probability is considerably smaller than $1/2.$