I have a list of data, and I need to know if the values are normally distributed. 4 of the 20 values on the list lie outside of 3 standard deviations of the mean. Is the data normally distributed and why?
2026-02-22 21:28:02.1771795682
How to tell when a data series is a normal distribution
414 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in STATISTICS
- Given is $2$ dimensional random variable $(X,Y)$ with table. Determine the correlation between $X$ and $Y$
- Statistics based on empirical distribution
- Given $U,V \sim R(0,1)$. Determine covariance between $X = UV$ and $V$
- Fisher information of sufficient statistic
- Solving Equation with Euler's Number
- derive the expectation of exponential function $e^{-\left\Vert \mathbf{x} - V\mathbf{x}+\mathbf{a}\right\Vert^2}$ or its upper bound
- Determine the marginal distributions of $(T_1, T_2)$
- KL divergence between two multivariate Bernoulli distribution
- Given random variables $(T_1,T_2)$. Show that $T_1$ and $T_2$ are independent and exponentially distributed if..
- Probability of tossing marbles,covariance
Related Questions in STANDARD-DEVIATION
- Statistics question using normal distribution
- Is the usage of unbiased estimator appropriate?
- How do you calculate the probability of the difference between two normal distribution
- Does the null hypothesis always conform to a normal distribution?
- How to tell when a data series is a normal distribution
- Average and standard deviation equation system
- Linear interpolation of over time of standard deviation measurements
- Understanding a probability theory term "deviation"
- A baseball player hits the ball 35% of the time. In 10 opportunities, what is the probability of connecting more than 2 hits?
- Problem when Multiplying Sample Distributions
Related Questions in MEANS
- Arithmetic and harmonic mean of two numbers.
- Mean and variance of $X:=(k-3)^2$ for $k\in\{1,\ldots,6\}$.
- Reason generalized linear model
- How do you calculate the probability of the difference between two normal distribution
- Compute the variance of $S = \sum\limits_{i = 1}^N X_i$, what did I do wrong?
- Find out if $\hat{\tau}$ is an unbiased estimator
- Computing mean and variance of custom distribution
- Prove $\lim\limits_{n \to \infty} \frac{\log (n!)}{n \sqrt[n]{\log 2 \cdot \log 3 \cdots \log n}}=1$
- How to tell when a data series is a normal distribution
- Nice mean for negative Numbers
Related Questions in DATA-ANALYSIS
- When extrapolating for projections, how do you know which function-form to use?
- Log base e versus log base 10 for semilog plot, how do I recognize the type of curve my data fits?
- Book Recommendation for Analyzing Experimental Results
- MLE of non-numerical variables?
- How to tell when a data series is a normal distribution
- Counting occurrences of elements from data stream
- Based on the coinmarket cap api, how do they calculate the bitcoin percent change
- Statistical analysis of study with categorical and numerical variables
- If I divide one column of a matrix by another, do I get new "information"?
- Formula for Weighted Review Ratings
Related Questions in DESCRIPTIVE-STATISTICS
- Fermi/Bose gases
- A metric for capturing "fairness"
- Median estimated from grouped data with a single class
- Compare the variance of two unbiased estimators
- How to tell when a data series is a normal distribution
- Statistics: Why are school grades qualitative variable?
- How to show that mean and median are the same if the distribution is symmetrical
- Can I use the median of a Percent to show growth?
- Descriptive statistics term
- Z-Transformed (Standardized) Data Retaining Its Skew?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
It is not unusual for normal samples to show boxplot outliers. However, it would be unusual to have two observations in 20 lie outside the interval $\bar X \pm 3S,$ where $\bar X$ and $S$ are the sample mean and SD, respectively.
A commonly used graphical procedure is to make a 'normal probability plot', also called a 'Q-Q plot' (or 'quantile-quantile' plot). Roughly speaking, the points on a normal probability plot should lie in a straight line (with some recognition that it is not unusual for a few of the smaller or larger observations to stray from the line).
There are many formal statistical tests of normality. One of the better ones is the Shapiro-Wilk test. With a sample size as small as $n = 20$ it is very difficult to distinguish normal data from data that are only approximately normal. (It is generally futile to try to judge normality by looking at a histogram of a sample of 20.)
I will illustrate these methods using four random samples of size 20, the first two from normal populations, the third from an exponential population and the fourth from a uniform population.
Boxplots. The second normal sample happens to show two boxplot outliers; not unusual. However, this sample has $\bar X \pm 3S$ approximately equal to $(52,\,151),$ which includes the outliers at about $65$ and about $139.$ so your three-SD rule is not violated.
Exponential samples usually show high outliers; it is unusual to see only one outlier here. However the boxplot of the exponential sample shows a marked skewness towards high values.
Normal Probability Plots. Both normal samples (top) have points roughly in a straight line. The exponential sample is pretty clearly not normal. The plot of the uniform sample (lower-right) seems to show lack of linearity toward the right.
Shapiro-Wilk tests. P-values below $0.05$ lead to rejection of the null hypothesis that the data are from a normal population. Only the exponential sample is clearly not normal.