Let $K_{p,q}$ denote the complete bipartite graph .
I want to find the eigen values of $L(K_{p,q})$ where $L(G)$ denotes the Laplacian Matrix of a graph $G$.
$L(G)=a_{ij}=$
$$\begin{array}{ccc} d_i &\mbox{i= j}\\ -1 &\mbox{$i\sim j$}\\ 0 &\mbox{otherwise} \end{array} $$
My try:
I know that $L(G)=D(G)-A(G)$ where $D(G)$ denotes the degree matrix of $G$. I have found out that the eigen values of $A(G)$ are $0$ of multiplicity $p+q-2$ and $,\sqrt{pq},-\sqrt{pq}$ each of multiplicity $1$ and the eigen values of $D(G)$ are $p$ of multiplicity $q$ and $q$ of multiplicity $p$.
But I am not getting how to get the eigen values of $L(G)$ from here?
Please give some hints.
Let $I_p$ and $I_q$ be the identity matrices of orders $p$ and $q$ respectively, and let $J$ be the all-ones matrix of order $p \times q$. Then the Laplacian matrix $L$ of the complete bipartite graph $K_{p,q}$ is \begin{equation*} L = \left[\begin{array}{c|c} qI_p & -J\\ \hline -J^T & pI_q \end{array}\right]. \end{equation*}
Then, to find the characteristic polynomial, \begin{equation*} xI - L = \left[\begin{array}{c|c} (x-q)I_p & J\\ \hline J^T & (x - p)I_q \end{array}\right] = \left[\begin{array}{c|c} A & B\\ \hline C & D \end{array}\right]. \end{equation*}
Now we observe the following:
Therefore, the spectrum of $L$ is, for $p \ne q$, \begin{pmatrix} 0 & p & q & p + q\\ 1 & q - 1 & p - 1 & 1 \end{pmatrix} and for $p = q$, \begin{pmatrix} 0 & p & 2p\\ 1 & 2(p - 1) & 1 \end{pmatrix} where the first row values are the eigenvalues and the second row values are the corresponding multiplicities.