$$\lim_{x \rightarrow 9} \sqrt{x} = 3$$
This means we need to satisfy $|\sqrt{x} - 3| < \epsilon$ where $0 < |x - 9| < \delta$
But I don't really know how to make the two conditions match so we can link delta and epsilon together. Absolute values mess with my head and I don't know the right way to work with them.
Do I need to do something like:
$0 < |x - 9| < \delta$ turns to
$0 < |(\sqrt{x} + 3)(\sqrt{x} - 3)| < \delta$
$0 < |\sqrt{x} + 3| |\sqrt{x} - 3| < \delta$
$0 < (\sqrt{x} + 3) |\sqrt{x} - 3| < \delta$
$0 < |\sqrt{x} - 3| < \frac{\delta }{\sqrt{x} + 3} $
$$|x-9|<\delta\implies |\sqrt x-3||\sqrt x+3|<\delta\implies |\sqrt x-3|<\frac{\delta}{|\sqrt x+3|}=\frac{\delta}{\sqrt x+3}\le\frac{\delta}{3}=\epsilon$$ then letting $\delta=3\epsilon$ leads us to what we want.