In a left noetherian ring, does having a left inverse for an element guarantee the existence of right inverse for that element?
2026-02-22 19:52:19.1771789939
In a left noetherian ring, does having a left inverse for an element guarantee the existence of right inverse for that element?
306 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in ABSTRACT-ALGEBRA
- Feel lost in the scheme of the reducibility of polynomials over $\Bbb Z$ or $\Bbb Q$
- Integral Domain and Degree of Polynomials in $R[X]$
- Fixed points of automorphisms of $\mathbb{Q}(\zeta)$
- Group with order $pq$ has subgroups of order $p$ and $q$
- A commutative ring is prime if and only if it is a domain.
- Conjugacy class formula
- Find gcd and invertible elements of a ring.
- Extending a linear action to monomials of higher degree
- polynomial remainder theorem proof, is it legit?
- $(2,1+\sqrt{-5}) \not \cong \mathbb{Z}[\sqrt{-5}]$ as $\mathbb{Z}[\sqrt{-5}]$-module
Related Questions in RING-THEORY
- Jacobson radical = nilradical iff every open set of $\text{Spec}A$ contains a closed point.
- A commutative ring is prime if and only if it is a domain.
- Find gcd and invertible elements of a ring.
- Prove that $R[x]$ is an integral domain if and only if $R$ is an integral domain.
- Prove that $Z[i]/(5)$ is not a field. Check proof?
- If $P$ is a prime ideal of $R[x;\delta]$ such as $P\cap R=\{0\}$, is $P(Q[x;\delta])$ also prime?
- Let $R$ be a simple ring having a minimal left ideal $L$. Then every simple $R$-module is isomorphic to $L$.
- A quotient of a polynomial ring
- Does a ring isomorphism between two $F$-algebras must be a $F$-linear transformation
- Prove that a ring of fractions is a local ring
Related Questions in NONCOMMUTATIVE-ALGEBRA
- If $P$ is a prime ideal of $R[x;\delta]$ such as $P\cap R=\{0\}$, is $P(Q[x;\delta])$ also prime?
- In a left noetherian ring, does having a left inverse for an element guarantee the existence of right inverse for that element?
- Are there rational coefficients that hold such properties?
- A characterization for minimal left ideals of semisimple rings
- $A \subseteq B \subseteq C$, with $A$ and $C$ simple rings, but $B$ is not a simple ring
- Simplicity of Noetherian $B$, $A \subseteq B\subseteq C$, where $A$ and $C$ are simple Noetherian domains
- Representations of an algebra
- A characterization of semisimple module related to anihilators
- Counterexample request: a surjective endomorphism of a finite module which is not injective
- Two definitions of an $A$-algebra
Related Questions in NOETHERIAN
- Prove that the field $k(x)$ of rational functions over $k$ in the variable $x$ is not a finitely generated $k$-algebra.
- Ascending chain of proper submodules in a module all whose proper submodules are Noetherian
- Noetherian local domain of dimension one
- Dimension of Quotient of Noetherian local ring
- Is $\mathbb{Z}[\frac{1}{2}]$ Noetherian?
- Finitely generated modules over noetherian rings
- Simplicity of Noetherian $B$, $A \subseteq B\subseteq C$, where $A$ and $C$ are simple Noetherian domains
- Why noetherian ring satisfies the maximal condition?
- If M is a a left module over $M_n(D)$ where $D$ is a division ring, M is Noetherian iff Artinian
- torsion-free modules $M$ over Noetherian domain of dimension $1$ for which $l(M/aM) \le (\dim_K K \otimes_R M) \cdot l(R/aR), \forall 0 \ne a \in R$
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Yes, it does.
If $ba=1$ but $ab\neq 1$, then you can show $Rb\supseteq Rb^2\supseteq Rb^3\supseteq\ldots$ is an infinite descending sequence of left summands, and the complements of these summands are an infinite ascending chain.
Added later
Looking back, I'm a little appalled at not being clear about the complements.
Firstly, here is a hint about why they are summands: $b^na^nb^n=b^n$. Secondly, let me point out that $aR\supseteq a^2R\supseteq a^3R\supseteq \ldots$ is a descending chain of right summands for similar reasons, because $a^nb^na^n=a^n$.
Thirdly, I had a specific complement in mind for each summand $Re$, and that was $R(1-e)$. Perhaps at the time it seemed clear to me that $Rf\subseteq Re$ implied $R(1-f)\supseteq R(1-e)$, but now it seems not so clear to me.
Now, it does seem that given a descending chain of summands, it is indeed possible to find an ascending chain of complements for them, but it takes a little explaining.
Instead, I would prefer to suggest an easier route:
As hinted above, the chain of $a^nR$ is a strictly descending chain of right summands.
For an idempotent $e$, the left annihilator of $eR$ is $R(1-e)$.
The chain $\ell.ann(a^nR)$ is a strictly ascending chain of left ideals.