It's a classical and useful result that over a commutative, unital ring $A$, a surjective endomorphism of a finite module $M$ is an isomorphism. The standard proof seems to require commutativity in that one needs determinants and the adjugate matrix. So I imagine there are simple counterexamples over noncommutative rings, even over connected commutative graded algebras. What are they?
2026-02-22 19:50:56.1771789856
Counterexample request: a surjective endomorphism of a finite module which is not injective
160 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in MODULES
- Idea to make tensor product of two module a module structure
- $(2,1+\sqrt{-5}) \not \cong \mathbb{Z}[\sqrt{-5}]$ as $\mathbb{Z}[\sqrt{-5}]$-module
- Example of simple modules
- $R$ a domain subset of a field $K$. $I\trianglelefteq R$, show $I$ is a projective $R$-module
- $S_3$ action on the splitting field of $\mathbb{Q}[x]/(x^3 - x - 1)$
- idempotent in quiver theory
- Isomorphism of irreducible R-modules
- projective module which is a submodule of a finitely generated free module
- Exercise 15.10 in Cox's Book (first part)
- direct sum of injective hull of two modules is equal to the injective hull of direct sum of those modules
Related Questions in EXAMPLES-COUNTEREXAMPLES
- A congruence with the Euler's totient function and sum of divisors function
- Seeking an example of Schwartz function $f$ such that $ \int_{\bf R}\left|\frac{f(x-y)}{y}\right|\ dy=\infty$
- Inner Product Uniqueness
- Metric on a linear space is induced by norm if and only if the metric is homogeneous and translation invariant
- Why do I need boundedness for a a closed subset of $\mathbb{R}$ to have a maximum?
- A congruence with the Euler's totient function and number of divisors function
- Analysis Counterexamples
- A congruence involving Mersenne numbers
- If $\|\ f \|\ = \max_{|x|=1} |f(x)|$ then is $\|\ f \|\ \|\ f^{-1}\|\ = 1$ for all $f\in \mathcal{L}(\mathbb{R}^m,\mathbb{R}^n)$?
- Unbounded Feasible Region
Related Questions in NONCOMMUTATIVE-ALGEBRA
- If $P$ is a prime ideal of $R[x;\delta]$ such as $P\cap R=\{0\}$, is $P(Q[x;\delta])$ also prime?
- In a left noetherian ring, does having a left inverse for an element guarantee the existence of right inverse for that element?
- Are there rational coefficients that hold such properties?
- A characterization for minimal left ideals of semisimple rings
- $A \subseteq B \subseteq C$, with $A$ and $C$ simple rings, but $B$ is not a simple ring
- Simplicity of Noetherian $B$, $A \subseteq B\subseteq C$, where $A$ and $C$ are simple Noetherian domains
- Representations of an algebra
- A characterization of semisimple module related to anihilators
- Counterexample request: a surjective endomorphism of a finite module which is not injective
- Two definitions of an $A$-algebra
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
I think your intuition is entirely wrong here: usually, graded-commutative rings behave basically the same as commutative rings (as long as you restrict to graded modules, graded homomorphisms, etc). So you should expect that the result does still hold for graded-commutative rings (again, assuming your modules and homomorphisms are graded), and in fact it does. For instance, the proof in Martin Brandenburg's answer in the post you linked to still works--the only place it uses commutativity is in the cyclic case (to say that $A/I$ is a ring and the statement is true when $M=A$), and these arguments still work for graded-commutative rings (any graded left ideal is two-sided and any homogeneous element with a one-sided inverse is a unit).
As for a natural source of examples, just consider any ring $A$ which has an element $a\in A$ which has a left inverse but not a right inverse. Then right multiplication by $a$ is a homomorphism of left $A$-modules $A\to A$ which is surjective but not an isomorphism.