In classic ER random graph, the edge distribution is Bernoulli. Given a weighted random graph where the edge weight is restricted in $[0,1]$, is there a canonical assumption of the weight distribution in researches? If so, it would be very helpful if you could also help provide some reference.
2026-02-22 20:15:55.1771791355
In weighed random graph where the edge weight is restricted to $[0,1]$, what are the usual assumptions of edge weight distribution?
330 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in PROBABILITY
- How to prove $\lim_{n \rightarrow\infty} e^{-n}\sum_{k=0}^{n}\frac{n^k}{k!} = \frac{1}{2}$?
- Is this a commonly known paradox?
- What's $P(A_1\cap A_2\cap A_3\cap A_4) $?
- Prove or disprove the following inequality
- Another application of the Central Limit Theorem
- Given is $2$ dimensional random variable $(X,Y)$ with table. Determine the correlation between $X$ and $Y$
- A random point $(a,b)$ is uniformly distributed in a unit square $K=[(u,v):0<u<1,0<v<1]$
- proving Kochen-Stone lemma...
- Solution Check. (Probability)
- Interpreting stationary distribution $P_{\infty}(X,V)$ of a random process
Related Questions in RANDOM-GRAPHS
- Bound degrees of sparse random graphs
- Connectivity of random graphs - proof $\frac{logn}{n}$ is threshold
- In weighed random graph where the edge weight is restricted to $[0,1]$, what are the usual assumptions of edge weight distribution?
- Upper Bound on Vertices in SCC Graph of Directed Random Graph
- The degree of a vertex in $G(n,m)$ is approx. Poisson
- What is the expected length of the diameter of a special random graph?
- Clique numbers and Theorem 4.5.1 in "The Probabilistic Method" by Alon and Spencer
- Expected global clustering coefficient for Erdős–Rényi graph
- Probability of having a path of a given length in a random graph?
- Asymptotic distribution of wedges in a random graph using second moment's method
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
The only choices of weight distributions that I would consider natural (choices that do not need further motivation) are the uniform distribution on $[0,1]$, and the exponential distribution (but the exponential is not bounded, which is the case you're interested in).
The idea is that a research problem is more interesting if it is simple to describe. If you can only prove your result for weights following the $\text{Beta}(3,17)$ distribution, that is less interesting, unless you motivate it:
The simplest distribution on $[0,1]$ to describe is the uniform, so it should be the default.
The motivation for considering the exponential distribution is from results such as One, Two and Three Times $\frac{\log n}{n}$ for Paths in a Complete Graph with Random Weights by Svante Janson. This paper considers a large class of weight distributions (which includes the uniform) and proves that all of them behave the same, because when you take the minimum of many random variables (under some assumptions such as the PDF is approximately linear near $0$) the result is exponentially distributed in the limit.
So in other similar problems, we can assume that the weight distribution is exponential without much loss of generality. (I expect that most problems which involve finding minimum-weight whatevers in the graph will behave like this.)
Of course, a result that works for many distributions is stronger than a result which only holds for one specific distribution.