Reading Cassels and Fröhlich Chap. VII about Global Class Field Theory, I stumbled upon the following problem: if $K\subset L\subset M$ are finite abelian extensions, then the Main Theorem on Abelian Extensions (5.1, D) asserts the existence of the following commutative diagram $\require{AMScd}$ \begin{CD} C_K/N_{M/K}C_M @>{\psi_{M/K}}>> \text{Gal}(M/K)\\ @VVV @VVV\\ C_K/N_{L/K}C_L @>{\psi_{L/K}}>> \text{Gal}(L/K) \end{CD} (where $C_K$ is the idèle class group of $K$, $N_{M/K}$ denotes the idèle norm and $\psi_{M/K}$ is the Artin map) and the author says the left vertical arrow comes from the inclusion $N_{M/K}C_M\subset N_{L/K}C_L$, but why does that inclusion hold? I think that from the fact that $A_L\otimes_L M=A_M$ (adèles) we have an inclusion of the idèles group $J_L\subset J_M$ but I cannot see why the norm seems to reverse that inclusion.
2026-02-22 22:33:33.1771799613
Inclusion between norm groups in the idèle class group
157 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in ABSTRACT-ALGEBRA
- Feel lost in the scheme of the reducibility of polynomials over $\Bbb Z$ or $\Bbb Q$
- Integral Domain and Degree of Polynomials in $R[X]$
- Fixed points of automorphisms of $\mathbb{Q}(\zeta)$
- Group with order $pq$ has subgroups of order $p$ and $q$
- A commutative ring is prime if and only if it is a domain.
- Conjugacy class formula
- Find gcd and invertible elements of a ring.
- Extending a linear action to monomials of higher degree
- polynomial remainder theorem proof, is it legit?
- $(2,1+\sqrt{-5}) \not \cong \mathbb{Z}[\sqrt{-5}]$ as $\mathbb{Z}[\sqrt{-5}]$-module
Related Questions in NUMBER-THEORY
- Maximum number of guaranteed coins to get in a "30 coins in 3 boxes" puzzle
- Interesting number theoretical game
- Show that $(x,y,z)$ is a primitive Pythagorean triple then either $x$ or $y$ is divisible by $3$.
- About polynomial value being perfect power.
- Name of Theorem for Coloring of $\{1, \dots, n\}$
- Reciprocal-totient function, in term of the totient function?
- What is the smallest integer $N>2$, such that $x^5+y^5 = N$ has a rational solution?
- Integer from base 10 to base 2
- How do I show that any natural number of this expression is a natural linear combination?
- Counting the number of solutions of the congruence $x^k\equiv h$ (mod q)
Related Questions in ALGEBRAIC-NUMBER-THEORY
- Splitting of a prime in a number field
- algebraic integers of $x^4 -10x^2 +1$
- Writing fractions in number fields with coprime numerator and denominator
- Tensor product commutes with infinite products
- Introduction to jacobi modular forms
- Inclusions in tensor products
- Find the degree of the algebraic numbers
- Exercise 15.10 in Cox's Book (first part)
- Direct product and absolut norm
- Splitting of primes in a Galois extension
Related Questions in CLASS-FIELD-THEORY
- $(K^*)$ in $K^*$
- Surjectivity of the inv map in Global class field theory
- On the Galois group of the maximal $p$-abelian $p$-ramified extension of a number field
- Which primes are ramified?
- Computing Hilbert Class Field of a number field
- Existence of totally real number fields of any degree
- How is the Artin map defined for ramified extensions?
- Brauer group of global fields
- Adeles under base change
- What is the structure of the $H$?
Related Questions in ADELES
- Counting characters of bounded conductors
- Constructing a solenoid to satisfy its universal property as a projective limit over circles
- $\iota\left(\mathbb Q\right)\subset\mathbb A_\mathbb Q$ is a lattice (diagonal embedding).
- Find $x \in \mathbb{Q}(i)$ with $ |x - 1|_{2+i} < \frac{1}{\sqrt{5}} $, $|x+1|_{2-i} < \frac{1}{\sqrt{5}}$ and $|x|_{7} < \frac{1}{7} $
- Inclusion between norm groups in the idèle class group
- Let $\text{T} = \mathbb{Q}(i)^\times/\mathbb{Q}^\times$ compute $\text{T}(\mathbb{A})/\text{T}(\mathbb{Q})$
- Strong approximation and class number in the adelic setting
- Fourier Expansion of a function on $\mathbb A_k/k$
- Property of smooth functions on the adeles
- Representation of $\overline{\mathbb{Q}}$ in One Dimension
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
As pointed out in the comments, we have $N_{M/K} = N_{L/K} \circ N_{M/L},$ so that $$N_{M/K}(C_M) = N_{L/K}(N_{M/L}(C_M)) \subset N_{L/K}(C_L).$$ This yields a quotient morphism $$C_K/N_{M/K}(C_M) \to C_K/N_{L/K}(C_L).$$