I will appreciate your help to solve this question.
For a function $fi:R^2 → R$ in inhomogeneous coordinates, we obtain a function
$fh : R^2$ × ($R$ \ {0}) $→ R$ in homogeneous coordinates as:
$fh(x, y, w) := fi(\frac xw, \frac yw)$.
Prove that:
(1) If $ fi(x, y) = 0$ is a bivariate polynomial equation, then $fh(x, y, w) = 0$ is a trivariate polynomial
equation such that all monomials have the same degree.
(2) The equation $fi(x, y) = 0$ has at least one solution if and only if $fh(x, y, w) = 0$
Has infinitely many solutions.
2026-02-22 17:51:54.1771782714
inhomogeneous coordinates to homogeneous coordinates
302 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail AtRelated Questions in COORDINATE-SYSTEMS
- How to change a rectangle's area based on it's 4 coordinates?
- How to find 2 points in line?
- Am I right or wrong in this absolute value?
- Properties of a eclipse on a rotated plane to see a perfect circle from the original plane view?
- inhomogeneous coordinates to homogeneous coordinates
- Find the distance of the point $(7,1)$ from the line $3x+4y=4$ measured parallel to the line $3x-5y+2=0.$
- A Problem Based on Ellipse
- Convert a vector in Lambert Conformal Conical Projection to Cartesian
- Archimedean spiral in cartesian coordinates
- How to find the area of the square $|ABCD|$?
Related Questions in CURVES
- Studying regular space curves when restricted to two differentiable functions
- Given a circle, can i assume that the point where all the normals went thought and the point where all the tangents are equidistants are the same?
- Function determining temperature of points along a curve (find local maxima temp & local minima temp)
- Reference for $L$-functions of curves
- About the Green's Theorem
- inhomogeneous coordinates to homogeneous coordinates
- Can the relocation of one control point of a NURBS curve be compensated by an adjustment of some weights?
- $\| \gamma'(t) \|$ = constant for all $t$, if and only if $\gamma''(t)$ is normal to the tangent vector space for all $t$.
- proving that a curve with constant curvature contained in a sphere its a circle
- Proving two reparameterizations by arclength differ only by a sign and constant
Related Questions in MATHEMATICAL-MODELING
- Does Planck length contradict math?
- Solving the heat equation with robin boundary conditions
- inhomogeneous coordinates to homogeneous coordinates
- Writing Differential equations to describe a system
- Show that $z''+F(z') + z=0$ has a unique, stable periodic solution.
- Similar mathematic exercises about mathematical model
- What are common parameters to use when using Makeham's Law to model mortality in the real world?
- How do I scale my parabolas so that their integrals over [0,1] are always the same?
- Retrain of a neural network
- Is there a mathematical function you can think of to model this behavior?
Related Questions in SPLINE
- Approximate spline equation with Wolfram Mathematica
- Almost locality of cubic spline interpolation
- inhomogeneous coordinates to homogeneous coordinates
- How to construct a B-spline from nodal point in Matlab?
- Evaluation the interpolation polynomial at $x$
- Book suggestions on B-spline method for solving differential equations
- C2 continuous Bezier contour.
- Formula for the partial derivative of a bivariate tensor-product spline on a grid of points
- Integral of two zero-order spline basis functions
- Cubic Spline Interpolation - Solve X from Y
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?