Could someone give me an idea on how I can model one period of this function where I am able to control the width of this dip at the middle ($W_m$) and the width separation at the top ($W_t$). It should be a smooth curve at the bottom.

2026-02-22 19:31:33.1771788693
Is there a mathematical function you can think of to model this behavior?
65 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in FUNCTIONS
- Composition of functions - properties
- Finding Range from Domain
- Why is surjectivity defined using $\exists$ rather than $\exists !$
- What are the functions satisfying $f\left(2\sum_{i=0}^{\infty}\frac{a_i}{3^i}\right)=\sum_{i=0}^{\infty}\frac{a_i}{2^i}$
- Lower bound of bounded functions.
- Does there exist any relationship between non-constant $N$-Exhaustible function and differentiability?
- Given a function, prove that it's injective
- Surjective function proof
- How to find image of a function
- No. of Continuous Functions
Related Questions in MATHEMATICAL-MODELING
- Solving the heat equation with robin boundary conditions
- How to use homogeneous coordinates and the projective plane to study the intersection of two lines
- inhomogeneous coordinates to homogeneous coordinates
- Writing Differential equations to describe a system
- Show that $z''+F(z') + z=0$ has a unique, stable periodic solution.
- Similar mathematic exercises about mathematical model
- What are common parameters to use when using Makeham's Law to model mortality in the real world?
- How do I scale my parabolas so that their integrals over [0,1] are always the same?
- Retrain of a neural network
- Is there a mathematical function you can think of to model this behavior?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
In this post I described a family of curves called superconics that are generally described by
$$f(X) = b(1-|X/a|^q)^{1/p}$$
When $p$ and $q$ are large you can achieve the shape that you are looking for. The large values of these parameters will assure that the curve is smooth at the bottom. The figure below shows an example for the case of $a=b=1 \text{ & } p=q=10$. There are sufficient parameters here to fit your curve nicely.