It's a follow-up to my previous question. Can we find an anti-derivative $$\int\arcsin x\cdot\ln^3x\,dx$$ or, at least, evaluate the definite integral $$\int_0^{1/2}\arcsin x\cdot\ln^3x\,dx$$ in a closed form (ideally, as a combination of elementary functions and polylogarithms)?
Integral $\int_0^{1/2}\arcsin x\cdot\ln^3x\,dx$
347 Views Asked by OlegK https://math.techqa.club/user/olegk/detail AtThere are 3 best solutions below
The indefinite integral can be expressed in terms of hypergeometrics.
We start with integration by parts with $dv=\sin^{-1}(x)$ and $u=\log^3x$.
$$\begin{align} I&=\int \arcsin x \cdot \ln^3x\,dx\\ &=\ln^3x\cdot\left(\sqrt{1-x^2}+x\arcsin x\right)-\int \left(\sqrt{1-x^2}+x\arcsin x\right)\cdot \frac{3\ln^2x}{x}\,dx \end{align}$$
Expanding the integrand we get
$$\frac{3\sqrt{1-x^2}\cdot\ln^2x}{x}+3\arcsin(x)\ln^2(x)$$
The integration of the second term is addressed in your previous question so I will focus on just the first term.
$$K=\int\frac{3\sqrt{1-x^2}\ln^2x}{x}\,dx$$
Mathematica gives the result $K=$
$$\frac{3\sqrt{1-x^2}}{x\sqrt{1-\frac{1}{x^2}}} \left[2 x \, _4F_3\left(-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2};\frac{1}{2},\frac{1}{2},\frac{1}{2};\frac{1}{x^2}\right)-2 x \log (x) \, _3F_2\left(-\frac{1}{2},-\frac{1}{2},-\frac{1}{2};\frac{1}{2},\frac{1}{2};\frac{1}{x^2}\right)+x \sqrt{1-\frac{1}{x^2}} \log ^2(x)+\log ^2(x) \csc ^{-1}(x)\right]$$
Therefore
$$I=\ln^3x\cdot\left(\sqrt{1-x^2}+x\arcsin x\right)-K-3\int\arcsin x\ln^2x\,dx$$
Here are the sum representations of the hypergeometrics
$$\, _3F_2\left(-\frac{1}{2},-\frac{1}{2},-\frac{1}{2};\frac{1}{2},\frac{1}{2};\frac{1}{x^2}\right)=-\frac{1}{\sqrt \pi}\sum_{k=0}^\infty\frac{x^{-2k}}{(2k-1)^3}\cdot\frac{\Gamma\left(k+\frac 1 2\right)}{\Gamma(k+1)}$$
$$\, _4F_3\left(-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2};\frac{1}{2},\frac{1}{2},\frac{1}{2};\frac{1}{x^2}\right)=\frac{1}{\sqrt \pi}\sum_{k=0}^\infty \frac{x^{-2k}}{(2k-1)^4}\cdot\frac{\Gamma\left(k+\frac 1 2\right)}{\Gamma(k+1)}$$
We will outline of a way forward leaving some of the work to the reader.
Denote the integral of interest by $I$ where
$$I=\int \arcsin(x) \log^3(x)\,dx \tag 1$$
Integrating $(1)$ by parts by letting $u=\arcsin(x)$ and $v=x\left(\log^3(x)-3\log^2(x)+6\log(x)-6\right)$, we find that
$$\begin{align} I&=x\arcsin(x)\left(\log^3(x)-3\log^2(x)+6\log(x)-6\right)\\\\&-\int \left(\frac{\log^3(x)-3\log^2(x)+6\log(x)-6}{\sqrt{1-x^2}}\right)\,x\,dx \tag 2 \end{align}$$
Next, denote the integral on the right-hand side of $(2)$ by $J$. Enforcing the substitution $x=\sqrt{1-y^2}$ yields
$$\begin{align} J&=-\int \left(\frac{\log^3(x)-3\log^2(x)+6\log(x)-6}{\sqrt{1-x^2}}\right)\,x\,dx\\\\ &=J_3+J_2+J_1+J_0 \end{align}$$
where
$$\begin{align} J_3&=\int \log^3(\sqrt{1-y^2})\,dy \tag 3\\\\ J_2&=-3\int \log^2(\sqrt{1-y^2})\,dy \tag 4\\\\ J_1&=6\int \log(\sqrt{1-y^2})\,dy \tag 5\\\\ J_0&=-6\int 1\,dy \tag 6 \end{align}$$
The integrals in $(5)$ and $(6)$ can be evaluated in terms of elementary functions with
$$J_0=-6y$$
and
$$J_1=3y\log(1-y^2)-6y-3\log(1-y)+3\log(1+y)$$
The integrals in $(3)$ and $(4)$ can be expressed in terms of polylogarithm functions. For $J_2$ we can write
$$\begin{align} J_2&=-3\int \log^2(\sqrt{1-y^2})\,dy\\\\ &=-\frac34 \left(K_1+K_2+K_3\right) \end{align}$$
where
$$\begin{align} K_1&=\int \log^2(1-y)\,dy \tag 7\\\\ K_2&=\int \log^2(1+y)\,dy \tag 8\\\\ K_3&=2\int \log(1-y)\log(1+y)\,dy \tag 9 \end{align}$$
The integrals $K_1$ and $K_2$ can be written in closed form with
$$\begin{align} K_1&=(y-1)\left(\log^2(1-y)-2\log(1-y)+2\right)\\\\ \end{align}$$
and
$$\begin{align} K_2&=(y+1)\left(\log^2(1+y)-2\log(1+y)+2\right)\\\\ \end{align}$$
For $K_3$ we integrate by parts with $u=\log(1-y)$ and $v=(y+1)\log(y+1)-y$ and obtain
$$\begin{align} K_3&=2(y+1)\log(1-y^2)-2y\log(1-y)+2\int \frac{(y+1)\log(y+1)-y}{1-y}\,dy\\\\ &=2(y+1)\log(1-y^2)-2y\log(1-y)+2y+2\log(1-y)+2\int \frac{(y+1)\log(y+1)}{1-y}\,dy\\\\ &=2(y+1)\log(1-y)+2y\left(1-\log(1-y)\right)+4\int \frac{\log(1+y)}{1-y}\,dy \tag{10} \end{align}$$
To evaluate the integral in $(10)$, we make the substitution $y=1-2z$. Then,
$$\begin{align} \int \frac{\log(1+y)}{1-y}\,dy&=-\log(2)\log(w)-\int \frac{\log(1-w)}{w}\,dw\\\\ &=-\log(2)\log\left(\frac{1-y}{2}\right)+\text{Li}_2\left(\frac{1-y}{2}\right) \end{align}$$
The integral $J_3$ can be evaluated in terms of the dilogarithm function $\text{Li}_2$ and trilogarithm function $\text{Li}_3$ using a similar approach to the one used herein to evaluate $K_2$. We will leave that very tedious analysis to the reader.
As can be checked by differentiation, there is an antiderivative continuous on $(0,1)$:
Here is an outline of an approach leading to this result:
Bonus: