Integral involving logarithmics and powers: $ \int_{0}^{D} z \cdot (\sqrt{1+z^{a}})^{b} \cdot \ln(\sqrt{1+z^{a}})\; \mathrm dz $

75 Views Asked by At

Do you guys have any ideas on solving the following integral: $$ \int_{0}^{D} z \cdot (\sqrt{1+z^{a}})^{b} \cdot \ln(\sqrt{1+z^{a}})\; \mathrm dz $$ with $a, b$ being constants.

I was trying to use the formula (4.253.1) (shown below) of the book Table of Integrals, Series, and Products, 8th edition, to solve the integral by applying change of random variable, but it seems not to work. enter image description here

Thanks in advance.

1

There are 1 best solutions below

7
On BEST ANSWER

Concerning the antiderivative $$I=\int z \, (\sqrt{1+z^{a}})^{b} \, \ln(\sqrt{1+z^{a}})\, dz$$ let $$\sqrt{1+z^{a}}=t \implies z=\left(t^2-1\right)^{\frac{1}{a}}\implies dz=\frac{2 t \left(t^2-1\right)^{\frac{1}{a}-1}}{a}dt$$ which makes $$I=\frac 2a \int \left(t^2-1\right)^{\frac{2}{a}-1} t^{b+1} \log (t)\,dt$$ and then $$I=\frac{2 }{a \,(2+b)^2}\left(1-t^2\right)^{-2/a} \left(t^2-1\right)^{2/a} t^{b+2}\,J$$where $$J= \, _3F_2\left(1-\frac{2}{a},\frac{b}{2}+1,\frac{b}{2}+1;\frac{b}{2}+2,\frac{b}{2}+2 ;t^2\right)-$$ $$(b+2) \log (t) \, _2F_1\left(1-\frac{2}{a},\frac{b}{2}+1;\frac{b}{2}+2;t^2\right)$$

where appear hypergeometric functions.

When $z\to 0$, $t \to 1$ and $$\lim_{t\to 1} \, I=-\frac{(-1)^{-2/a} \Gamma \left(\frac{2}{a}\right) \Gamma \left(\frac{b}{2}+2\right) \left(\psi ^{(0)}\left(\frac{b}{2}+1\right)-\psi ^{(0)}\left(\frac{b}{2}+\frac{2}{a}+1\right)\right)}{a (b+2) \Gamma \left(\frac{b}{2}+\frac{2}{a}+1\right)}$$