Analyzing results Mathematica returned for several integrals and series, and putting pieces together, I came up with this conjecture: $$\int_0^{\pi/2}\frac{\sin\left(x-a\ln2\cdot\tan x\right)}{\left(e^{2\pi a\tan x}-1\right)\cdot\cos x}\,dx\stackrel{\color{gray}?}=\frac{\operatorname{li}\left(2^a\right)}{2^{a+1}}+\frac{2\,a-1+a\cdot\Re\,{_2F_1}(1,1;a;2)}{4\,a\,(1-a)}\color{gray}{,\,a>0\land a\ne1 }$$ Can we prove this result? It is possible to generalize it to complex values of the parameter $a$?
2025-01-13 02:07:14.1736734034
Integral ${\large\int}_0^{\pi/2}\frac{\sin\left(x-a\ln2\cdot\tan x\right)}{\left(e^{2\pi a\tan x}-1\right)\cdot\cos x}\,dx$
291 Views Asked by Vladimir Reshetnikov https://math.techqa.club/user/vladimir-reshetnikov/detail At
1
There are 1 best solutions below
Related Questions in CALCULUS
- Derivative of Lambert W function.
- how to use epsilion-delta limit definition to answer the following question?
- Finding the equation of a Normal line
- How to Integrate the Differential Equation for the Pendulum Problem
- Help in finding error in derivative quotient rule
- How to solve the following parabolic pde?
- Finding inflection point
- How to find the absolute maximum of $f(x) = (\sin 2\theta)^2 (1+\cos 2\theta)$ for $0 \le \theta \le \frac{\pi}2$?
- Utility Maximization with a transformed min function
- Interpreting function notation?
Related Questions in INTEGRATION
- Integrating using Green's Theorem
- Finding the value of a constant given a probability density function
- How to show that $\int_{\delta D} x\ dx $ is area of $D$
- How to find probability after finding the CDF of a max?
- Convergence of difference of series
- Why is it legal to take the antiderivative of both sides of an equation?
- question over a integration changes order and hard to compute
- Estimate of a (integral) function
- Using the chain rule of differentiation to evaluate an integral along a curve
- Name of multidimensional propagator integral
Related Questions in DEFINITE-INTEGRALS
- Revolving Asymmetric Function Around Y-Axis Where It is Bonded From -Ve Value to +Ve Value.
- One statement about definite integrals implying an another.
- How do you calculate $\int_0^{\pi/2}\tan(x)\ln(\sin(x))\,dx$?
- How to find $\lim_{x\to +\infty}{\left(\sqrt{\pi}x-\sum_{n=0}^{\infty}\frac{(-1)^nx^{2n+2}}{2n!(2n+1)(2n+2)}\right)}$?
- $\sum_{k=n}^{\infty}\left(n-k\right)e^{-\lambda}\frac{\lambda^{k}}{k!}= ?$
- $I=\int_{-1}^{2}\frac{xf(x^2)}{2+f(x+1)}dx$
- Definite integral on fractional part function .
- Estimates of $f(x) = \int_x^{x^2} \dfrac{dy}{\ln y}$
- $\sum_{j=3}^\infty \frac{1}{j(\log(j))^3}$ converges or diverges?
- Time integration - time "direction"
Related Questions in HYPERGEOMETRIC-FUNCTION
- When is the hypergeometric function ever needed if it can be computed so much more efficiently?
- Probability Computation - Why do the results not match?
- (Exponential) Growth of Operator Norm of Uncentered Maximal Function
- How do I symbolically compute $\int_{a}^{b} e^{x^2}(\textrm{erf}(x) - \textrm{erf(a)})\;\textrm{d}x$?
- Express an exponential integral in hypergeometric form
- Simplification of hypergeometric function with specific arguments
- How to prove that $\int (1-x^2)^{k-1} \ dx= x \cdot {_2F_1}(\frac 12, 1-k, \frac 32, x^2)$?
- How to prove that ${_2F_1}(1-k, 1, k+1, -1) = k\cdot {_2F_1}(\frac 12, 1-k, \frac 32, 1)$
- Is there any way to simplify ${_2F_1}(a, 1, a+2k, -1)$?
- Hypergeometric series for $\sin(az)$
Related Questions in TRIGONOMETRY
- Find all values of $\theta$ such that $cos(2\theta)=1/2$
- Unknown equals to trigonometric equation of itself
- A problem relating to triangles and progressions
- Problem relating to Similar Triangles and Trigonometry:
- $\cot(x+110^\circ)=\cot(x+60^\circ)\cot x\cot(x-60^\circ)$
- How coordinates of **P'** are (y, x)?
- $ 1 - \cos 2 \Theta$ can be rewritten as $1 - \left( 1 - 2 \sin^2 \Theta\right)$ - I don't understand why though
- What is Cosecant inverse of $x$ equal to?
- Trignometry and Greatest Integer function analysis question .
- Simplification of this trigonometric expression: $\tan(1°)×\tan(2°)×\tan(3°)×\tan(4°)×\cdots×\tan(87°)×\tan(88°)×\tan(89°)$
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Refuting the Anti-Cantor Cranks
- Find $E[XY|Y+Z=1 ]$
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- What are the Implications of having VΩ as a model for a theory?
- How do we know that the number $1$ is not equal to the number $-1$?
- Defining a Galois Field based on primitive element versus polynomial?
- Is computer science a branch of mathematics?
- Can't find the relationship between two columns of numbers. Please Help
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- A community project: prove (or disprove) that $\sum_{n\geq 1}\frac{\sin(2^n)}{n}$ is convergent
- Alternative way of expressing a quantied statement with "Some"
Popular # Hahtags
real-analysis
calculus
linear-algebra
probability
abstract-algebra
integration
sequences-and-series
combinatorics
general-topology
matrices
functional-analysis
complex-analysis
geometry
group-theory
algebra-precalculus
probability-theory
ordinary-differential-equations
limits
analysis
number-theory
measure-theory
elementary-number-theory
statistics
multivariable-calculus
functions
derivatives
discrete-mathematics
differential-geometry
inequality
trigonometry
Popular Questions
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- How to find mean and median from histogram
- Difference between "≈", "≃", and "≅"
- Easy way of memorizing values of sine, cosine, and tangent
- How to calculate the intersection of two planes?
- What does "∈" mean?
- If you roll a fair six sided die twice, what's the probability that you get the same number both times?
- Probability of getting exactly 2 heads in 3 coins tossed with order not important?
- Fourier transform for dummies
- Limit of $(1+ x/n)^n$ when $n$ tends to infinity
I only managed to arrive at a closed form for the integral in a different form from that which was proposed in the question.
Preliminary Manipulations:
\begin{align} \int^\frac{\pi}{2}_0\frac{\sin(x-a\ln{2}\tan{x})}{(e^{2\pi a\tan{x}}-1)\cos{x}}\ {\rm d}x &=\Im\int^\infty_0\frac{e^{-i(a\ln{2})x}}{(e^{2\pi ax}-1)(1-ix)}\ {\rm d}x\tag1\\ &=\Im\int^0_{-\infty}\frac{e^{-i(a\ln{2})x}}{1-ix}\left(1+\frac{1}{e^{2\pi ax}-1}\right)\ {\rm d}x\tag2\\ &\color{blue}{=\frac{1}{2}\Im\int^\infty_0\frac{e^{i(a\ln{2})x}}{1+ix}\ {\rm d}x}+\color{red}{\frac{1}{2}\Im\int^\infty_{-\infty}\frac{e^{-i(a\ln{2})x}}{(e^{2\pi ax}-1)(1-ix)}\ {\rm d}x}\tag3 \end{align}
Explanation:
$(1)$: Substituted $x\mapsto\arctan{x}$
$(2)$: Substituted $x\mapsto-x$.
$(3)$: Averaged $(1)$ and $(2)$.
Contour Integration: The First Integral
Integrating $\displaystyle f(z)=\frac{1}{2}\frac{e^{i\alpha z}}{1+iz}$ along the contour $[0,R]\cup Re^{i[0,\pi/2]}\cup i[R,0]$, \begin{align} \color{blue}{\frac{1}{2}\Im\int^\infty_0\frac{e^{i(a\ln{2})x}}{1+ix}\ {\rm d}x} &=\Im\left(\color{grey}{\pi i\operatorname*{Res}_{z=i}f(z)}+\frac{i}{2}PV\int^\infty_0\frac{e^{-(a\ln{2})y}}{1-y}\ {\rm d}y\right)\\ &=\left.-\frac{1}{2}e^{-a\ln{2}}\operatorname{Ei}(a\ln{2}(1-y))\right|^\infty_{y=0}=\frac{1}{2}\frac{\operatorname{Ei}(a\ln{2})}{e^{a\ln{2}}}\\ &\color{blue}{=\frac{\operatorname{li}(2^a)}{2^{a+1}}} \end{align}
Contour Integration: The Second Integral
$\text{Case}\ 1$: $a\in\mathbb{R}^+\backslash\mathbb{Z}^+$
Integrate $\displaystyle g(z)=\frac{1}{2}\frac{e^{-i(a\ln{2})z}}{(e^{2\pi az}-1)(1-iz)}$ along the contour $[-R,R]\cup Re^{i[2\pi,\pi]}$. This (clockwise) contour encloses only simple poles at $z=-i$ and $z=-\frac{in}{a}$. Summing up the residues, \begin{align} \color{red}{\frac{1}{2}\Im\int^\infty_{-\infty}\frac{e^{-i(a\ln{2})x}}{(e^{2\pi ax}-1)(1-ix)}\ {\rm d}x} &=\color{red}{-}\frac{1}{2}\Im\left(\pi i\operatorname*{Res}_{z=0}g(z)+2\pi i\operatorname*{Res}_{z=-i}g(z)+2\pi i\sum^\infty_{n=1}\operatorname*{Res}_{z=-in/a}g(z)\right)\\ &=-\frac{1}{2}\Im\left(\pi i\cdot\frac{1}{2\pi a}+2\pi i\cdot\frac{i}{2^a}\frac{1}{e^{-2\pi ia}-1}+2\pi i\sum^\infty_{n=1}\frac{1}{2^{n+1}\pi(a-n)}\right)\\ &=-\frac{1}{4a}+\frac{\pi\cot(\pi a)}{2^{a+1}}+\frac{1}{2}\sum^\infty_{n=1}\frac{1}{2^n(n-a)}\\ &\color{red}{=\frac{1}{4a}+\frac{\pi\cot(\pi a)}{2^{a+1}}+\frac{1}{2}\Phi\left(\frac{1}{2},1,-a\right)} \end{align} where $\Phi$ is the lerch transcendent defined as $\displaystyle\Phi(z,s,\alpha)=\sum^\infty_{n=0}\frac{z^n}{(n+\alpha)^s}$ for $|z|<1$ and $\alpha\notin\mathbb{Z}^-$. (It is implemented in Mathematica or Wolfram as $\text{HurwitzLerchPhi[z,s,a]}$, not $\text{LerchPhi[z,s,a]}$).
$\text{Case}\ 2$: $a\in\mathbb{Z}^+$
In this case, the pole at $z=-i$ is order $2$. Applying the residue theorem once again, \begin{align} \color{red}{\frac{1}{2}\Im\int^\infty_{-\infty}\frac{e^{-i(a\ln{2})x}}{(e^{2\pi ax}-1)(1-ix)}\ {\rm d}x} &=-\frac{1}{2}\Im\left(\pi i\cdot\frac{1}{2\pi a}+2\pi i\cdot\frac{\ln{2}-\pi i}{2^{a+1}\pi}+2\pi i\sum^\infty_{\substack{n=1\\n\neq a}}\frac{1}{2^{n+1}\pi(a-n)}\right)\\ &=\frac{1}{4a}-\frac{\ln{2}}{2^{a+1}}+\frac{1}{2}\sum^\infty_{\substack{n=0\\n\neq a}}\frac{1}{2^{n}(n-a)}\\ &=\frac{1}{4a}\color{grey}{-\frac{\ln{2}}{2^{a+1}}}+\frac{1}{2}\sum^{a-1}_{n=0}\frac{1}{2^{n}(n-a)}+\color{grey}{\frac{1}{2}\sum^\infty_{n=a+1-(a+1)}\frac{1}{2^{n+(a+1)}(n+(a+1)-a)}}\\ &\color{red}{=\frac{1}{4a}+\frac{1}{2}\sum^{a-1}_{n=0}\frac{1}{2^{n}(n-a)}} \end{align}
The Final Result:
Combining both blue and red integrals gives \begin{align} \int^\frac{\pi}{2}_0\frac{\sin(x-a\ln{2}\tan{x})}{(e^{2\pi a\tan{x}}-1)\cos{x}}\ {\rm d}x = \begin{cases} \displaystyle\small{\frac{\mathrm{li}(2^a)}{2^{a+1}}+\frac{1}{4a}+\frac{\pi\cot(\pi a)}{2^{a+1}}+\frac{1}{2}\Phi\left(\frac{1}{2},1,-a\right)}, &\text{if } a\in\mathbb{R}^+\backslash\mathbb{Z}^+\\ \displaystyle\small{\frac{\mathrm{li}(2^a)}{2^{a+1}}+\frac{1}{4a}+\frac{1}{2}\sum^{a-1}_{n=0}\frac{1}{2^{n}(n-a)}}, &\text{if } a\in\mathbb{Z}^+ \end{cases} \end{align}