$X$ is a full column rank $n$ by $p$ matrix with the first column a vector of ones. Now the I was trying to prove, from a different approach that the SSR/variance is Chi square but this means I have to show that $X(X'X)^{-1}X'-J/n$ is idempotent which I cant seem to show.
2026-02-22 22:05:14.1771797914
Is it true that $X(X'X)^{-1}X'-J/n$ is idempotent, where $J$ is an $n$ by $n$ matrix of ones?
951 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in MATRICES
- How to prove the following equality with matrix norm?
- I don't understand this $\left(\left[T\right]^B_C\right)^{-1}=\left[T^{-1}\right]^C_B$
- Powers of a simple matrix and Catalan numbers
- Gradient of Cost Function To Find Matrix Factorization
- Particular commutator matrix is strictly lower triangular, or at least annihilates last base vector
- Inverse of a triangular-by-block $3 \times 3$ matrix
- Form square matrix out of a non square matrix to calculate determinant
- Extending a linear action to monomials of higher degree
- Eiegenspectrum on subtracting a diagonal matrix
- For a $G$ a finite subgroup of $\mathbb{GL}_2(\mathbb{R})$ of rank $3$, show that $f^2 = \textrm{Id}$ for all $f \in G$
Related Questions in INVERSE
- Inverse of a triangular-by-block $3 \times 3$ matrix
- Proving whether a matrix is invertible
- Proof verification : Assume $A$ is a $n×m$ matrix, and $B$ is $m×n$. Prove that $AB$, an $n×n$ matrix is not invertible, if $n>m$.
- Help with proof or counterexample: $A^3=0 \implies I_n+A$ is invertible
- Show that if $a_1,\ldots,a_n$ are elements of a group then $(a_1\cdots a_n)^{-1} =a_n^{-1} \cdots a_1^{-1}$
- Simplifying $\tan^{-1} {\cot(\frac{-1}4)}$
- Invertible matrix and inverse matrix
- show $f(x)=f^{-1}(x)=x-\ln(e^x-1)$
- Inverse matrix for $M_{kn}=\frac{i^{(k-n)}}{2^n}\sum_{j=0}^{n} (-1)^j \binom{n}{j}(n-2j)^k$
- What is the determinant modulo 2?
Related Questions in IDEMPOTENTS
- Prove that an idempotent element must be either 0, 1 or a zero-divisor.
- What is the set {$e\in(R/ I)\times(R/J): e$ is idempotent}
- The idempotent elements of Eisenstein Integers
- Prove that $A-I_n$ is idempotent
- Idempotent substitution $\theta$
- Relations of structures related to conjugate idempotents
- Is $A^3=A$ a condition for idempotency of matrices?
- Is it true that $X(X'X)^{-1}X'-J/n$ is idempotent, where $J$ is an $n$ by $n$ matrix of ones?
- Idempotents over a ring with zero divisors
- Proving lemma about centrality of idempotent elements in a Ring with no nilpotent elements.
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Note that $J/n$ is a projection, and so is $X(X'X)^{-1}X'$. Since $$\operatorname{Tr}(X(X'X)^{-1}X')=\operatorname{Tr}((X'X)^{-1}X'X)=\operatorname{Tr}(I_n)=n,$$ we have that $X(X'X)^{-1}X'$ has rank $n$, so $X(X'X)^{-1}X'=I_n. $
Thus $$ X(X'X)^{-1}X'-J/n=I_n-J/n $$ is a projection ($P$ is a projection if and only if $I-P$ is).
A second method would be to show directly that $X(X'X)^{-1}X'$ is the projection onto the span of the columns of $X$. Indeed, if $X=\begin{bmatrix} x_1&\cdots&x_p\end{bmatrix}$, then (with $c_j(A)$ denoting the $j^{\rm th}$ column of $A$) \begin{align} X(X'X)^{-1}X'x_j&=X(X'X)^{-1}c_j(X'X)=X\,c_j((X'X)^{-1}X'X))\\ \ \\ &=X\,c_j(I_p)=Xe_j=c_j(X)=x_j. \end{align}