If $e$ and $f$ are conjugate idempotents in some algebra $A$, I guess the modules $Ae$ and $Af$ should be isomorphic, as well as the algebras $eAe$ and $fAf$ . Are the maps canonically given by just mapping $ae$ to $af$ resp. $eae$ to $faf$, or can something there go wrong? Thank you very much.
2026-02-22 22:01:15.1771797675
Relations of structures related to conjugate idempotents
102 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in MODULES
- Idea to make tensor product of two module a module structure
- $(2,1+\sqrt{-5}) \not \cong \mathbb{Z}[\sqrt{-5}]$ as $\mathbb{Z}[\sqrt{-5}]$-module
- Example of simple modules
- $R$ a domain subset of a field $K$. $I\trianglelefteq R$, show $I$ is a projective $R$-module
- $S_3$ action on the splitting field of $\mathbb{Q}[x]/(x^3 - x - 1)$
- idempotent in quiver theory
- Isomorphism of irreducible R-modules
- projective module which is a submodule of a finitely generated free module
- Exercise 15.10 in Cox's Book (first part)
- direct sum of injective hull of two modules is equal to the injective hull of direct sum of those modules
Related Questions in ALGEBRAS
- Algebraic step including finite sum and binomial coefficient
- idempotent in quiver theory
- All maximal subfields of a Division Algebra are isomorphic.
- Finitely generated $k-$algebras of regular functions on an algebraic variety
- Special $k$-algebra is finitely generated
- Spectral radius inequality for non-abelian Banach algebras
- Question about R-algebra "generated by"
- Pushout in Commutative $\mathbb{Z}$-Alg
- Is multiplication in a normed algebra distributive?
- On the definition of free algebra and localization of a non-commutative ring
Related Questions in IDEMPOTENTS
- Prove that an idempotent element must be either 0, 1 or a zero-divisor.
- What is the set {$e\in(R/ I)\times(R/J): e$ is idempotent}
- The idempotent elements of Eisenstein Integers
- Prove that $A-I_n$ is idempotent
- Idempotent substitution $\theta$
- Relations of structures related to conjugate idempotents
- Is $A^3=A$ a condition for idempotency of matrices?
- Is it true that $X(X'X)^{-1}X'-J/n$ is idempotent, where $J$ is an $n$ by $n$ matrix of ones?
- Idempotents over a ring with zero divisors
- Proving lemma about centrality of idempotent elements in a Ring with no nilpotent elements.
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
No, this doesn't work: why would the map sending $ae$ to $af$ be well-defined, for instance? This would mean that if $ae=0$ then $af=0$, which need not be true. For instance, if $e$ and $f$ are projections of the same rank in a matrix algebra, this would be saying that if $a$ vanishes on the image of $e$ then it must also vanish on the image of $f$, which certainly isn't true in general.
To define the correct maps, you need to use the fact that $e$ and $f$ are conjugate. This means there is some unit $u$ such that $u^{-1}eu=f$. The isomorphism $Ae\to Af$ is then just the map $x\mapsto xu$ (notice that $aeu=auf$ so this does map $Ae$ to $Af$), and the isomorphism $eAe\to fAf$ is $x\mapsto u^{-1}xu$. (Note in particular that these isomorphisms may not be unique or canonical, and depend on a choice of $u$.)