Just out of curiosity, I'd like to know more properties of box topology. I found Is $\mathbb{R}^\omega$ a completely normal space, in the box topology? quite interesting, but unfortunately, it hasn't attracted too much attention. I also searched it in MathOverflow, the comment by Ramiro de la Vega in Is it still an open problem whether $ℝ^$ is normal in the box topology? asserted it's been known the answer is negative. However, I can't obtain any further information on the Internet. Could somebody provide a disproof, or at least offer some useful links?
2026-02-22 21:30:31.1771795831
Is $\mathbb{R}^\omega$ endowed with the box topology completely normal (or hereditarily normal)?
366 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in GENERAL-TOPOLOGY
- Is every non-locally compact metric space totally disconnected?
- Let X be a topological space and let A be a subset of X
- Continuity, preimage of an open set of $\mathbb R^2$
- Question on minimizing the infimum distance of a point from a non compact set
- Is hedgehog of countable spininess separable space?
- Nonclosed set in $ \mathbb{R}^2 $
- I cannot understand that $\mathfrak{O} := \{\{\}, \{1\}, \{1, 2\}, \{3\}, \{1, 3\}, \{1, 2, 3\}\}$ is a topology on the set $\{1, 2, 3\}$.
- If for every continuous function $\phi$, the function $\phi \circ f$ is continuous, then $f$ is continuous.
- Defining a homotopy on an annulus
- Triangle inequality for metric space where the metric is angles between vectors
Related Questions in SEPARATION-AXIOMS
- A finite topological space is T1 if and only the topology is discrete
- Find the intersection of all $T_2$ topologies on an infinite set $X$
- Why isn't $T_1$ space also Hausforff?
- Quotient space and quotient set for $\mathrm{End}(\mathbb{R}^2)$
- $\left\{e\right\}$ Closed Implies $T_0$ and Regular Topological Group
- Question about the proof of $T_3+$ countable basis $= T_4$
- Show that a non-trivial connected Tychonoff space is uncountable
- A homeomorphism on a dense set in Hausdorff space
- Unclear definition of open sets in proof of Regular Lindelof space is normal
- $X,Y$ are normal, $A \subset X$ closed, $f:A \rightarrow Y$ continuous. Show that $X \cup_f Y$ is normal.
Related Questions in BOX-TOPOLOGY
- Box topology defines a topological vector space?
- Space of Sequences with Finitely Many Nonzero Terms is Paracompact
- Closures and interiors of real sequences
- Is the sequence of real number that are $0$ from some point Sense in the box or product topologies
- Is $\mathbb{R}^\omega$ endowed with the box topology completely normal (or hereditarily normal)?
- Proving $(-1,1)^{\mathbb{N}}$ is not open in the product topology of $\mathbb{R}^{\mathbb{N}}$
- Does the box topology have a universal property?
- Nontrivial example of continuous function from $\mathbb R\to\mathbb R^{\omega}$ with box topology on $\mathbb R^{\omega}$
- Is $\mathbb R^J$ normal in the box topology when $J$ is uncountable?
- Net convergence over product and box topology
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
It is not. Erik van Douwen showed ("The box product of countably many metrizable spaces need not be normal", Fund. Math., link) that if $X_0$ is the irrationals (as a subspace of the reals) and for $n \ge 1$, $X_n = \omega+1$ (a compact space: a convergent sequence in the reals is homeomorphic to it) then $\Box_{n \in \omega} X_n$ is not normal.
This space can be seen as a subspace of $\mathbb{R}^\omega$ in the box topology, so the latter space is not hereditarily normal (so not completely normal). Erik himself showed in the paper (as a "byproduct") that a box product of metrisable spaces cannot be hereditarily normal if infinitely many of them are non-discrete.
A proof of the first result can also be found in Mary Ellen Rudin's "Lectures on Set theoretic topology" (a very nice book that should be read by anyone interested in research in general topology, IMHO), in the chapter on box products; this is where I found it.