I have seen from other questions on this site, such as this one, that a regular space would be sufficient, however we haven't yet learned about Lindelöf spaces in the course, so if I want to use the fact that regular Lindelöf spaces are normal, I would have to prove it myself. Surely there is a proof with a Tychonoff space rather than just a regular space, which doesn't use this fact. Maybe there is an easier way of proving such a space is normal?
2026-02-22 23:09:26.1771801766
Show that a non-trivial connected Tychonoff space is uncountable
271 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in GENERAL-TOPOLOGY
- Is every non-locally compact metric space totally disconnected?
- Let X be a topological space and let A be a subset of X
- Continuity, preimage of an open set of $\mathbb R^2$
- Question on minimizing the infimum distance of a point from a non compact set
- Is hedgehog of countable spininess separable space?
- Nonclosed set in $ \mathbb{R}^2 $
- I cannot understand that $\mathfrak{O} := \{\{\}, \{1\}, \{1, 2\}, \{3\}, \{1, 3\}, \{1, 2, 3\}\}$ is a topology on the set $\{1, 2, 3\}$.
- If for every continuous function $\phi$, the function $\phi \circ f$ is continuous, then $f$ is continuous.
- Defining a homotopy on an annulus
- Triangle inequality for metric space where the metric is angles between vectors
Related Questions in CONNECTEDNESS
- Estimation of connected components
- decomposing a graph in connected components
- Does every connected topological space have the property that you can walk around a finite open cover to get from any point to any other?
- A set with more than $n$ components has $n+1$ pairwise separated subsets.
- Can connectedness preservation be used to define continuity of a function?
- Prove the set is not connected
- Related the property of two points contained in the same component
- Is a connected component a group?
- f is a continuous function from (X,$\tau$) to {0,1} with discrete topology, if f non constant then (X,$\tau$) disconnected
- The separation of the subset $[-1, 0) \cup (0,1)$ in $\mathbb{R}$ contains the limit point of the other
Related Questions in SEPARATION-AXIOMS
- A finite topological space is T1 if and only the topology is discrete
- normal doesn't imply paracompact
- Find the intersection of all $T_2$ topologies on an infinite set $X$
- Why isn't $T_1$ space also Hausforff?
- Quotient space and quotient set for $\mathrm{End}(\mathbb{R}^2)$
- Question about the proof of $T_3+$ countable basis $= T_4$
- Show that a non-trivial connected Tychonoff space is uncountable
- A homeomorphism on a dense set in Hausdorff space
- Unclear definition of open sets in proof of Regular Lindelof space is normal
- $X,Y$ are normal, $A \subset X$ closed, $f:A \rightarrow Y$ continuous. Show that $X \cup_f Y$ is normal.
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
You don't need normality to get uncountability of $X$, if you have Tychonoff.
If $X$ is connected and Tychonoff, then take point $p \in X$ and some non-trivial open set $O$ that contains $p$ (so $X \neq O$). Then being Tychonoff gives us a continuous function $f: X \to [0,1]$ (or to $\mathbb{R}$) such that $f(p) = 0$ and $f[X\setminus O] = \{1\}$, or the other way round, the only important fact is that $0,1 \in f[X]$. From the last fact it follows by connectedness of $f[X]$ that $[0,1] \subseteq f[X]$ because if $C$ is connected in the reals or $[0,1]$ it must be order convex ($c_1 < x <c_2 , c_1,c_2 \in C$ implies $x \in C$). So $f[X]$ is uncountable and hence so is $X$.