I know the sine of a non-zero algebraic number is necessarily transcendental; but what about the inverse cosine of an irrational algebraic number?
2026-02-22 21:51:11.1771797071
Is $\mathrm{arccos}$ of an irrational algebraic number necessarily transcendental?
210 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in NUMBER-THEORY
- Maximum number of guaranteed coins to get in a "30 coins in 3 boxes" puzzle
- Interesting number theoretical game
- Show that $(x,y,z)$ is a primitive Pythagorean triple then either $x$ or $y$ is divisible by $3$.
- About polynomial value being perfect power.
- Name of Theorem for Coloring of $\{1, \dots, n\}$
- Reciprocal-totient function, in term of the totient function?
- What is the smallest integer $N>2$, such that $x^5+y^5 = N$ has a rational solution?
- Integer from base 10 to base 2
- How do I show that any natural number of this expression is a natural linear combination?
- Counting the number of solutions of the congruence $x^k\equiv h$ (mod q)
Related Questions in TRIGONOMETRY
- Is there a trigonometric identity that implies the Riemann Hypothesis?
- Finding the value of cot 142.5°
- Using trigonometric identities to simply the following expression $\tan\frac{\pi}{5} + 2\tan\frac{2\pi}{5}+ 4\cot\frac{4\pi}{5}=\cot\frac{\pi}{5}$
- Derive the conditions $xy<1$ for $\tan^{-1}x+\tan^{-1}y=\tan^{-1}\frac{x+y}{1-xy}$ and $xy>-1$ for $\tan^{-1}x-\tan^{-1}y=\tan^{-1}\frac{x-y}{1+xy}$
- Sine of the sum of two solutions of $a\cos\theta + b \sin\theta = c$
- Tan of difference of two angles given as sum of sines and cosines
- Limit of $\sqrt x \sin(1/x)$ where $x$ approaches positive infinity
- $\int \ x\sqrt{1-x^2}\,dx$, by the substitution $x= \cos t$
- Why are extraneous solutions created here?
- I cannot solve this simple looking trigonometric question
Related Questions in TRANSCENDENTAL-NUMBERS
- Two minor questions about a transcendental number over $\Bbb Q$
- Is it possible to express $\pi$ as $a^b$ for $a$ and $b$ non-transcendental numbers?
- Is it true that evaluating a polynomial with integer coefficients at $e$, uniquely defines it?
- Is $\frac{5\pi}{6}$ a transcendental or an algebraic number?
- Is there any intermediate fields between these two fields?
- Is there any pair of positive integers $ (x,n)$ for which :$e^{{e}^{{e}^{\cdots x}}}=2^{n}$?
- Why is :$\displaystyle {e}^\sqrt{2}$ is known to be transcedental number but ${\sqrt{2}}^ {e}$ is not known?
- Irrationality of $\int_{-a}^ax^nn^xd x$
- Proving that $ 7<\frac{5\phi e}{\pi}< 7.0000689$ where $\phi$ is the Golden Ratio
- Transcendence of algebraic numbers with Transcendental power
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Isn't the second statement a consequence of the first?
Let $\alpha=\arccos x$, where $x$ is algebraic. However, then $y=\sqrt{1-x^2}$ is also algebraic, as a solution of the quadratic $y^2+x^2-1=0$.
Now, suppose $\alpha$ is algebraic. It follows that either $\sin\alpha=\pm\sqrt{1-x^2}=\pm y$ is transcendental - (contradiction), or that $\alpha=0$, which actually gives you one case ($\arccos 1=0$) where $\arccos$ of an algebraic number is algebraic. (However, in this case $1$ is not irrational.)