isomorphism generalized semigroup

51 Views Asked by At

I would you like to construct an isomorphism with generalized full transformations.


All case for finite sets.

  • $\textbf{Case I}:$ Let $\theta:Y\rightarrow X_n$ is a bijection. Then

$S=\mathfrak{T}(X_n, Y,\theta)$ is a generalized full transformation semigroup with sandwich operation $\alpha\star\beta=\alpha\circ\theta\circ\beta$

$T=\mathfrak{T}(X_n, \circ)$

Then $$\phi:S\rightarrow T, \alpha\mapsto \alpha\theta$$ is an isomorphism.

By thinking about how can we construct $\phi$ I try to find $T$.

  • $\textbf{Case II}:$ Let $\theta:Y\rightarrow X_n$ is a $1-1$ and $\mid Y\mid=m<n$ (i.e., Let $\theta$ not be onto.)

Then $S=\mathfrak{T}(X_n, Y,\theta)$ and by taking $$\phi:S\rightarrow T, \alpha\mapsto \alpha\theta$$ Do it $\phi$ be an isomorphism we find $T=\{\alpha\in T_n: im(\alpha)\subseteq im(\theta)\}$

My question related to Case III:

  • $\textbf{Case III}:$ Let $\theta:Y\rightarrow X_n$ is onto and $\mid Y\mid=m>n$.

Let $S=\mathfrak{T}(X_n, Y,\theta)$,

How can we construct $\phi$ for which $T$?

Thank you for help!